ALDOLISATION STEREOCONTROLEE PAR UN GROUPE THERMOLABILE. SYNTHESE STEREOSELECTIVE DE COMPOSES POSSEDANT TROIS CARBONES ASYMETRIQUES CONSECUTIFS*.

R. BLOCH et L. GILBERT

Laboratoire des Carbocycles (Associé au CNRS) - Institut de Chimie Moléculaire d'Orsay - Bât. 420 Université de Paris-Sud, 91405 ORSAY (France)

(Received in Belgium 17 February 1988)

<u>Abstract</u> - The bulkiness of thermolabile norbornenyl and oxanorbonenyl groups has been used to induce good to excellent syn diastereoselective aldol condensations between Diels-Alder adducts of α, β -ethylenic ketones and various aldehydes. The aldols thus obtained give rise after thermolysis to syn α -methyl- β -siloxy- α '-ethylenic ketones of great synthetic potential. The reduction of these latters is achieved following known or original methods to give with high selectivity allylic 1,3-diols with three successive asymmetric carbons of well defined stereochemistry.

INTRODUCTION

Parmi les méthodes de construction de chaînes carbonées polyhydroxylées acycliques, la réaction de condensation aldolique tient une place de choix. Le contrôle de la stéréosélectivité de cette réaction a été intensément étudié pendant ces dix dernières années (1) car des chaînes polyhydroxylées de stéréochimie bien définie se retrouvent dans le squelette de nombreux composés naturels (macrolides, ansamycines) possédant d'importantes propriétés biologiques (2).

La réaction de condensation aldolique entre un aldéhyde et l'énolate lithié d'une cétone de type $\underline{1}$ peut conduire aux deux diastéréoisomères syn $\underline{2}$ et anti $\underline{3}^{**}$.

Les éléments essentiels pour le contrôle de la diastéréosélectivité d'une telle réaction sont d'une part la géométrie de l'énolate lithié de la cétone et d'autre part l'encombrement stérique du groupe R. Une corrélation directe a été établie (4) et interprétée (1,5) montrant que, sous contrôle cinétique, un énolate de géométrie Z donne préférentiellement l'aldol de stéréochimie syn alors qu'un énolate de géométrie E conduit principalement à l'aldol de stéréochimie anti. La syn sélectivité obtenue à partir de l'énolate Z est généralement plus élevée que l'anti sélectivité obtenue à partir de l'énolate E et ceci est d'autant plus vrai que R est stériquement plus encombrant. Il est donc important de pouvoir

^{*}Ce mémoire constitue une partie du travail de la thèse de Doctorat de L. Gilbert, Université de Paris-Sud, Orsay, Octobre 1987.

^{**}Pour la clarté des schémas, un seul énantiomère est dessiné pour représenter le mélange racémique. La nomenclature syn, anti telle qu'elle a été définie par Masamune et coll. (3) est utilisée.

contrôler la stéréochimie de l'énolate intermédiaire. Or l'encombrement stérique du groupe R jouant également un rôle en favorisant l'obtention de l'énolate Z, il est donc possible d'obtenir très sélectivement des aldols de stéréochimie syn par un choix judicieux de ce groupe R. Ainsi, d'un point de vue synthétique, l'utilisation de cétones <u>1</u> possédant un groupe R très encombrant et aisément modifiable par voie chimique a conduit différents auteurs à la synthèses d'aldols <u>4</u> où le groupe fonctionnel X permet une extension ultérieure de la chaîne (4b,6).

Ce mémoire rapporte les résultats obtenus lors des condensations aldoliques entre divers aldéhydes et les énolates lithiés de cétones <u>6</u> du type <u>1</u> où le groupe R est un groupe thermolabile encombrant tel que norbornényle ou oxanorbornényle (7). Ce groupement encombrant est à l'origine de la bonne à excellente diastéréosélectivité syn observée lors de la condensation aldolique. Une simple thermolyse permet alors d'accéder aux aldols protégés <u>5</u> qui, possédant deux autres groupements fonctionnels (carbonyle et double liaison) sont potentiellement plus riches pour la synthèse de composés polyhydroxylés que les aldols <u>4</u> proposés dans la littérature. Par exemple une réduction sélective de la fonction carbonyle conduit à des diols-l,3 allyliques possédant 3 carbones asymétriques successifs de stéréochimie bien définie.

RESULTATS ET DISCUSSION

1°) Synthèse des cétones 6

Les cétones <u>6a</u> et <u>6b</u> ont été préparées selon Stetter (8) par addition de l'iodure d'éthylmagnésium sur le nitrile correspondant commercial suivie d'une chromatographie sur colonne de silice.

La cétone bicyclique 6c a été obtenue selon le schéma :

La réaction de Diels-Alder entre la méthacroléine et le cyclopentadiène à basse température, catalysée par le chlorure d'aluminium, conduit très majoritairement à l'adduit possédant le groupe formyl en position exo [exo/endo = 96/4]. Après addition du bromure d'éthylmagnésium sur l'aldéhyde brut suivie d'une oxydation par la méthode de Swern, la cétone <u>6c</u> est obtenue avec un rendement global de 40-47% par rapport à la méthacroléine. La cétone <u>6d</u> est obtenue par une séquence analogue à partir de l'adduit de Diels-Alder de l'acroléine et du furanne, préparé selon une méthode de la littérature (9) modifiée (voir partie expérimentale). La séparation des différents diastéréoisomères a été effectuée au niveau de l'alcool.

2°) Sélectivité de formation des énolates

Le contrôle de la stéréosélectivité de la réaction de condensation aldolique passant par un contrôle préalable de la stéréochimie de l'énolate, il est nécessaire de connaître la quantité relative d'énolates Z et E obtenus suivant la base utilisée. Cette détermination a été effectuée sur les éthers d'énols triméthylsilylés obtenus par action du chlorure de triméthylsilyle sur les énolates correspondants.

Deux bases lithiées ont été utilisées : le diisopropylamidure de lithium (LDA) et le 1,1,1,3,3,3 hexaméthyldisilylamidure de lithium (LHMDS) et les résultats obtenus sont regroupés dans le tableau 1.

	Tableau I - Selectivite	de la deprotonation des cetones	<u>6</u>
Cétone	Base	Conditions expérimentales	Z/E
<u>6a</u>	LDA	-78°C 20 mn	53/47
<u>6b</u>	LDA	-78°C 20 mn	85/15
<u>6c</u>	LDA	-40°C 3 h	≥98/2
<u>6d</u>	LDA	-78°C 30 mn	50/50
<u>6a</u>	LHMDS	~78°C 20 mn	≥98/2
<u>6b</u>	LHMDS	-78°C 20 mn	≥98/2
<u>6c</u>	LHMDS	-40°C 3 h	≥98/2
<u>6d</u>	LHMDS	-78°C 30 mn	≥98/2

L'analyse par chromatographie en phase vapeur du mélange d'éthers d'énol obtenus permet de déterminer la proportion relative de chaque stéréoisomère. Cette analyse n'est cependant pas possible dans le cas de la cétone <u>6d</u>, l'énoxysilane étant instable thermiquement. Dans ce cas la proportion relative de chaque stéréoisomère a été estimée par RMN du proton par intégration des signaux correspondants aux protons des groupes triméthylsilyles.

La stéréochimie Z ou E des éthers d'énols silyliques a été déterminée par RMN du proton pour <u>6a,b,d</u>. Le déplacement chimique du proton H_A est plus élevé pour l'isomère Z que pour l'isomère E ($\Delta \delta = 0.04$ à 0.07 ppm) (10). De plus un couplage allylique entre H_A et le proton porté par le bicycle est observé pour l'isomère Z. Lorsqu'un seul stéréoisomère a été obtenu, c'est à dire dans le cas de la cétone <u>6c</u>, la stéréochimie Z attribuée à l'éther d'énol découle de son mode de formation. L'ensemble des résultats montre qu'une base telle que LHMDS permet dans tous les cas d'obtenir uniquement l'énolate lithié de géométrie Z et qu'elle est donc une base de choix pour l'étude de la sélectivité de la réaction de condensation aldolique entre les cétones <u>6</u> et divers aldéhydes.

3°) Stéréosélectivité de la condensation aldolique

Les réactions entre les énolates lithiés de géométrie Z des cétones <u>6a,b,c</u> et divers aldéhydes ont été réalisées suivant la méthodologie proposée dans la littérature (4b). En revanche dans le cas de la cétone <u>6d</u>, la présence de l'oxygène du pont favorise la formation d'un chélate intramoléculaire qui diminue d'une part la réactivité de l'énolate et d'autre part celle de l'aldéhyde en ne permettant pas au cation Li⁺ de réaliser une activation par assistance électrophile. Pour effectuer la condensation aldolique il a été nécessaire soit d'activer l'énolate en empêchant la chélation à l'aide d'un additif complexant tel que la tétraméthyléthylènediamine (TMEDA), soit d'activer l'aldéhyde par addition d'un acide de Lewis tel que Znl₂.

En raison de la présence d'un carbone asymétrique en α ' du carbonyle, la condensation aldolique peut conduire à la formation de deux diastéréoisomères syn et de deux diastéréoisomères anti. Nous ne discuterons pour l'instant que de la diastéréosélectivité syn ou anti de la réaction et nous ne représenterons sur les dessins qu'un seul des diastéréoisomères syn et anti.

Pour déterminer plus facilement la proportion syn/anti il était intéressant de réduire le nombre de carbones asymétriques et donc d'effectuer cette détermination sur les cétones α,β -éthyléniques obtenues après réaction de rétro Diels-Alder. Cependant les aldols subissant thermiquement une rétro aldolisation, la fonction hydroxyle a été protégée sous forme d'éther triméthylsilylique. Cette protection a été effectuée soit sur l'aldol préalablement isolé, soit par couplage direct entre l'aldolate lithié et le chlorure de triméthylsilyle. Des résultats identiques sont obtenus dans les deux cas, indiquant ainsi que la stéréochimie de l'aldolisation n'est pas modifiée par le couplage direct. Ces deux possibilités sont représentées dans le schéma suivant :

Schéma

La proportion relative des diastéréoisomères syn et anti a alors été aisément déduite de l'étude des spectres de RMN du proton par intégration des signaux dûs aux protons H_n.

L'attribution de la stéréochimie syn ou anti aux différents composés <u>8-13</u> a été établie par un examen attentif des spectres de RMN du proton. Il est connu que les β -hydroxycétones existent préférentiellement sous forme cyclique engendrée par une liaison hydrogène intramoléculaire (11). Cette conformation privilégiée entraîne des valeurs des constantes de couplage J_{HAHB} caractéristiques et l'on observe toujours J_{HAHB} syn $< J_{HAHB}$ anti. Ainsi les aldols majoritaires <u>8a</u> (X = CH₂, R = H, R' = Ph) ont une constante de couplage J_{HAHB} = 5,7 Hz inférieure à la constante de couplage J_{HAHB} = 8,5 Hz des isomères minoritaires <u>9a</u>. Nous avons observé un phénomène tout à fait comparable dans le cas des

 β -silyloxycétones bien qu'il ne puisse se former ici de liaison hydrogène intramoléculaire : J_{HAHB} = 8,5 Hz pour <u>10a</u> est inférieur à J_{HAHB} = 9,5 Hz observé pour <u>11a</u>; de même J_{HAHB} est égal à 8 Hz pour <u>12a</u> (R = H, R' = Ph) alors qu'il est de 9,8 Hz pour <u>13a</u>. Profitant de ces observations, la détermination de la stéréochimie syn ou anti des différents isomères a été effectuée par étude des spectres de RMN du proton des β -siloxycétones <u>11 et 12</u> obtenues après thermolyse. Dans le cas où un seul diastéréoisomère est obtenu, nous lui avons attribué la stéréochimie syn la plus probable en raison de leur méthode de préparation par analogie à ce qui est connu sur la condensation aldolique. Cette stéréochimie a été confirmée dans le cas de <u>11c</u> (R = CH₃, R' = Ph) après réductions sélectives en diols-1,3 correspondants (voir ci-dessous).

Les résultats obtenus lors des condensations aldoliques sont représentés dans le tableau II.

Entrée	Cétone	Aldéhyde	Temps de ^{a)} réaction	Rdt aldolisation %	Rdt ^{b)} thermolyse %	Syn/anti
1	<u>6a</u>	PhCHO	5 s	77	81	82/18
2	<u>6a</u>	n-C ₄ H ₉ CHO	5 mn	61	67	87/13
3	<u>6b</u>	PhCHO	5 s	70	80	83/17
4	<u>6b</u>	n-C ₄ H ₉ CHO	5 mn	60	71	89/11
5	<u>6c</u>	PhCHO	5 mn	82	80	≫98/2
6	<u>6c</u>	n-C ₄ H ₉ CHO	20 mn	63	75	≫98/2
7	<u>6c</u>	Ср-сно	10 mn	79	95	≫ 98/2
8	<u>6d</u>	PhCHO	20 mn + TMEE	DA 66	70	78/27
9	<u>6d</u>	PhCHO	20 mn + Znl ₂	58	85	75/25

Tableau II - Sélectivité de la réaction de condensation aldolique entre les cétones 6 et différents aldéhydes

a) Toutes les réactions ont été conduites à -78°C.

b) La thermolyse a été effectuée à 450°C dans les conditions de thermolyse éclair dans le cas des cétones <u>6a,b,c</u>. Dans le cas de <u>6d</u> la thermolyse a pu être effectuée à ll0°C au reflux du toluène.

L'examen du tableau II entraîne les commentaires suivants :

- Dans tous les cas une bonne à excellente stéréosélectivité en faveur de l'isomère syn est observée. - La position exo (entrées 1,2) ou endo (entrées 3,4) de la chaîne carbonylée a peu d'influence sur la stéréosélectivité de la réaction. De même cette sélectivité est peu affectée par la présence d'un oxygène dans le pont (entrées 8,9). De plus on obtient des résultats très semblables en favorisant ou défavorisant la chélation par activation de l'aldéhyde (entrée 9) ou de l'énolate (entrée 8). Cette observation, très difficile à interpréter à l'aide du modèle classique de type Zimmerman-Traxler, semble plus compatible avec la modélisation proposée par Anh (5), car dans ce modèle la chélation joue un rôle mineur.

- La cétone <u>6c</u> conduit aux seuls diastéréoisomères syn. L'encombrement stérique du groupe méthyl-2 norbornéhyle semble donc équivalent à celui d'un groupe tertiobutyle.

- Enfin les diastéréoisomères <u>8</u> (R = H) et <u>9</u> (R = H) pouvant être facilement séparés par chromatographie sur colonne de silice, il est donc possible de synthétiser dans tous les cas les cétones α,β -éthyléniques 12 diastéréoisomériquement pures.

4°) Diastéréosélectivité faciale de la réaction de condensation aldolique

a) Cétone chirale, aldéhyde achiral

Jusqu'à présent nous n'avons discuté que de la stéréosélectivité intrinsèque de la réaction de condensation aldolique sans nous préoccuper des quantités relatives des deux diastéréoisomères syn obtenus. Par exemple, à partir de la cétone <u>6c</u> on obtient un mélange des deux diastéréoisomères <u>10c</u> et <u>10c</u> en quantités relatives déterminables par examen du spectre RMN du proton.

Dans tous les cas étudiés : R' = Ph, R' = $n-C_4H_9$ et R' = furfuryle, un stéréoisomère est obtenu préférentiellement, les proportions de chacun des diastéréoisomères variant de 62/38 à 65/35. L'attribution de la stéréochimie est impossible sur la base des données RMN bien que, notamment, les déplacements chimiques soient très différents pour divers protons.

Cette faible sélectivité peut s'expliquer d'une part par une faible différentiation des deux faces de l'énolate (unedes faces paraît cependant relativement moins encombrée que l'autre) d'autre part par les deux conformations réactionnelles A et B envisageables.

Ces résultats excluent donc la possibilité d'obtention d'aldols optiquement actifs à partir de cétones <u>6</u> homochirales.

b) Cétone chirale, aldéhyde chiral

Nous nous sommes alors intéressés à la réaction de condensation aldolique entre l'énolate lithié de la cétone <u>6c</u> et un aldéhyde chiral : le phényl-2 propionaldéhyde. Cette réaction s'est avérée très sélective puisqu'elle ne donne naissance qu'aux seuls diastéréoisomères <u>14</u> et <u>14'</u>.

Par réaction de rétro Diels-Alder dans les conditions de thermolyse éclair, on obtient un unique isomère <u>15</u> comme le prouvent l'étude des spectres de RMN du ¹H et du ¹³C et la chromatographie en phase vapeur sur colonne capillaire. Les valeurs des constantes de couplage $J_{HAHB} = 6,4$ Hz et $J_{HBHC} = 5,2$ Hz sont en faveur de la stéréochimie syn-4,5, syn-5,6 de la β -triméthylsiloxycétone <u>15</u> obtenue:

La réaction de condensation aldolique est donc ici encore totalement syn-sélective et de plus l'addition de l'énolate s'effectue sur une seule des faces de l'aldéhyde pour fournir exclusivement l'isomère prédit par le modèle de Felkin-Anh (12). En revanche les β -triméthylsiloxycétones <u>14</u> et <u>14'</u> obtenues sont présentes dans la proportion 64/36. L'utilisation d'un aldéhyde possédant un centre de chiralité ne modifie donc pas la diastéréosélectivité faciale relativement à l'énolate de la cétone <u>6</u>c.

Les résultats obtenus indiquent donc que l'emploi d'un aldéhyde homochiral devrait logiquement conduire à un composé 15 optiquement actif. Cette possibilité est actuellement en cours d'étude.

5°) <u>Réductions des β -hydroxy (ou β -siloxy)cétones. Obtention stéréosélective de diols-1,3 possédant 3 carbones asymétriques successifs</u>

La réaction de condensation aldolique nous a permis d'obtenir sélectivement des aldols syn possédant 2 autres groupements fonctionnels. En vue de montrer la potentialité synthétique de tels composés, nous avons dans un premier temps étudié la sélectivité de la réduction du groupe carbonyle qui a conduit à des diols-1,3 allyliques comportant 3 carbones asymétriques successifs de stéréochimie bien définie. Les séquences utilisées sont représentées dans le schéma suivant :

La réduction de l'aldol <u>&c</u> par le borohydrure de sodium en présence de tributylbore (13) ou par l'hydrure de diisobutylaluminium (DIBAH) en solution dans le THF (14) conduit uniquement aux diastéréoisomères syn,syn <u>16</u>. La thermolyse de <u>16</u> à 600°C dans les conditions de thermolyse éclair fournit le diméthyl-2,4 phényl-1 pentène-4 diol-1,3 <u>17</u> sous forme du seul diastéréoisomère syn-1,2 syn-2,3. Les rendements de l'étape de réduction étant médiocres que le réducteur soit le DIBAH (55%) ou NaBH₄-nBu₃B (51%) nous avons examiné la stéréosélectivité de la réduction de <u>&c</u> par l'hydrure de lithiumaluminium. Après réaction de rétro Diels-Alder, un mélange de diols <u>17</u> et <u>21</u> est obtenu dans une proportion 90/10. La réaction de réduction s'effectue avec un excellent rendement (89%) mais la séparation des deux diastéréoisomères <u>17</u> et <u>21</u> est très délicate. Le diastéréoisomère <u>21</u> a été synthétisé par une méthode de réduction sélective des β -(t-butyldiméthylsilyl)oxycétones par AlLiH₄ récemment mise au point au laboratoire (15). Si la réduction de <u>18</u> suivie d'une hydrolyse acide puis d'une thermolyse conduit très majoritairement au diol anti,syn <u>21</u> (<u>21/17</u> = 90/10) la réduction dans les mêmes conditions de la β -silyloxycétone 20 s'avère beaucoup plus sélective puisque le seul diol 21 est obtenu.

La stéréochimie des différents diols-1,3 est déduite des constantes de couplage entre les hydrogènes situés d'une part sur le carbone portant l'hydroxyle formé lors de la réduction et d'autre part sur le carbone voisin porteur du méthyle. Dans tous les cas on observe $J_{syn} < J_{anti}$. Cette stéréochimie est confirmée par les déplacements chimiques en RMN ¹³C des carbones du méthyle compris entre les deux hydroxyles : ces carbones résonnent à champ plus fort dans les isomères syn,syn que dans les isomères syn,anti (15).

PARTIE EXPERIMENTALE

Les spectres IR ont été enregistrés avec un spectrophotomètre Perkin-Elmer 682. Les positions des bandes d'absorption caractéristiques sont données en cm-l et les lettres FF, F, m, f, ff placées après celles-ci signifient que les intensités sont respectivement très fortes, fortes, moyennes, faibles et très faibles. Les spectres de masse ont été enregistrés avec un spectromètre GC IMS R 10-10. Le produit est introduit soit par chromatographie en phase gazeuse (colonne capillaire CPSIL 5 de 25 m) (ionisation par impact électronique 70ev) soit par désorption (ionisation chimique NH3). Les intensités relatives sont indiquées entre parenthèses, le chiffre 100 étant attribué au pic de base. Généralement seuls les ions fragments m/e d'intensité supérieure à 10% du pic de base sont rapportés. Les spectres de RMN ont été ergegistrés avec des spectromètres Perkin-Elmer R-32A (90 MHz) et Bruker AM 250 (¹ H : 250 MHz; ¹ C : 60 MHz). Le tétraméthylsilane est utilisé comme réference interne et la position des pics est donnée signifient respectivement singulet, singulet élargi, doublet, triplet, quadruplet et multiplet.

(Bicyclo[2,2,1]heptène-5) yl-2 éthyl cétone 6a, 6b

Dans un ballon bicol de 500 ml muni d'un réfrigérant ascendant terminé par une garde à chlorure de calcium et d'une ampoule à brome de 100 ml, on prépare 0,25 mole d'iodure d'éthyl magnésium en solution dans 250 ml d'éther anhydre. On ajoute ensuite goutte à goutte une solution de 23,8 g (0,2 mole) de bicyclo[2,2,1]heptène-5 carbonitrile-2 dans 50 ml d'éther en agitant. La solution obtenue est portée au reflux pendant 15 h en maintenant une agitation vigoureuse. Après retour à température ambiante, la solution est refroidie à 0°C et 100 ml d'eau glacée sont ajoutés goutte à goutte. La solution est ensuite acidifiée par addition de 20 ml d'acide sulfurique concentré puis transférée dans une ampoule à décanter de 500 ml. La phase organique est récupérée et la phase aqueuse est extraite trois fois par 100 ml d'éther. Les phases éthérées sont regroupées et lavées par 150 ml d'une solution aqueuse saturée de bicarbonate de sodium. Les phases organiques sont ensuite séchées sur sulfate de magnésium et l'éther est évaporé à l'évaporateur rotatif pour donner 25 g de produit brut. Par distillation, on recueille 23,4 g (Rdt 78%) du mélange des isomères endo et exo. Eb/18 torr = 95 - 99°C. Les deux isomères sont séparés par chromatographie en phase liquide. Eluant : hexane-éther : 90/10.

IR (film) (cm⁻¹): 3140 (f); 3060 (m); 1720 (FF); 1570 (f); 1125 (F); 1045 (m). SM : M⁺ 150 (m/e int. rel.): 150 (22,0); 93 (15,5); 91 (22,8); 85 (38,3); 77 (16,4); <u>66</u> (100); 65 (17,3); 57 (19,8); 55 (23,8); 39 (23,8). RMN ⁺ H (CCl₄, 90 MHz), δ (ppm): Isomère exo <u>6a</u>: 1,03 (3H, t, J = 7,5 Hz, CH3); 1,35 (2H, m); 1,87 (2H, m); 2,45 (3H, m); 2,90 (2H, se); 6,11 (2H, m, -CH=CH-). Isomère endo <u>6b</u>: 0,97 (3H, t, J = 7,5 Hz, CH3); 1,36 (2H, m); 1,62 (2H, m); 2,38 (2H, q, J = 7,5 Hz, -CH2-CH3); 2,91 (2H, m); 3,20 (IH, se); 5,74 (IH, m, -CH=CH-); 6,04 (IH, m, -CH=CH-). Analyse: calculée pour C₁₀H₁₄O: C: 80,00; H : 9,33; trouvée exo <u>6a</u>: C : 80,10; H : 9,27; trouvée endo <u>6b</u>: C : 79,75; H : 8,99.

(Endo-méthyl-2 bicyclo[2,2,1]heptène-5) yl-2 éthyl cétone 6c

Dans un ballon tricol de 250 ml, muni d'un réfrigérant ascendant terminé par une garde à chlorure de calcium, et d'un thermomètre basse température, on place sous atmosphère d'azote 10 m¹ (0,12 moles) de méthacroléine et 10 g (0,15 moles) de cyclopentadiène fraîchement distillés en solution dans 150 ml de toluène. Le mélange réactionnel est refroidi à -50°C et on additionne par petites portions 2,4 g (18 mmoles) de chlorure d'aluminium anhydre. Après la première addition de chlorure d'aluminium, on s'assure que la réaction démarre en laissant la température revenir à 0°C. Lorsque tout le chlorure d'aluminium est additionné, on maintient l'agitation à -50°C pendant 2 h puis on laisse lentement (1 h) la solution

revenir à température ambiante. La solution est alors de nouveau refroidie à O°C et on additionne goutte à goutte 10 ml (72 mmoles) de triéthylamine. La solution est transférée dans une ampoule à décanter contenant 100 ml d'eau. La phase organique est récupérée et la phase aqueuse est extraite une fois par 100 ml de chlorure de méthylène. Les phases organiques sont regroupées, séchées sur sulfate de magnésium et le solvant est évaporé sous pression réduite pour conduire à 16 g d'exo-formy1-5 endo-méthyl-5 bicyclo[2,2,1]heptène-2 qui a été utilisé sans purification pour l'étape suivante.

IR (film) (cm^{-1}) : 3070 (f); 2810 (f); 2710 (f); 1725 (FF). SM : M⁺ 136 (m/e int. rel.) : 136 (24,8); 91 (31,6); 79 (36,0); 77 (24,6); 71 (21,2); 67 (32,6); <u>66</u> (100); 65 (33,2); 53 (10,3); 51 (15,1); 41 (33,8); 40 (19,5); 39 (55,1). RMN ⁺H (CDCl₃, 250 MHz) δ (ppm) : 0,72 (IH, m, H-6 endo); 0,95 (3H, s, CH₃); 1,35 (2H, m, H-7); 2,10 (IH, d.d, J³= 12,2 Hz, J^{*} = 3,9 Hz, H-6 exo); 2,75 (IH, s, H-4); 2,85 (IH, s, H-1); 6,06 (IH, m, -CH=CH-); 6,25 (IH, m, -CH=CH-); 9,65 (IH, s, -CHO). On obtient également au cours de la réaction environ 6% de l'isomère endo. Cette proportion est estimée

par intégration des signaux des protons aldéhydiques (-CHO endo : δ = 9,35 ppm).

Dans un ballon tricol de 500 ml équipé d'une ampoule à brome de 100 ml, d'une agitation mécanique et d'un réfrigérant ascendant, on prépare 180 mmoles du magnésien du bromure d'éthyle en solution dans 180 ml d'éther. Le ballon étant refroidi à l'aide d'un bain eau-glace, on additionne goutte à goutte sur une période de 1 h les 16 g d'aldéhyde en solution dans 100 ml de chlorure de méthylène. Le mélange réactionnel est agité à température ambiante pendant 15 h puis est à nouveau refroidi à l'aide d'un bain eau-glace. On additionne alors goutte à goutte 100 ml d'une solution aqueuse saturée de chlorure d'ammonium puis 50 ml d'une solution aqueuse d'acide chlorhydrique à 20%. La phase organique est récupérée et la phase aqueuse est extraite 3 fois par 100 ml d'éther. Les phases organiques sont regroupées, séchées sur sulfate de magnésium et les solvants sont extraits sous pression réduite. On obtient ainsi 15,7 g de produit brut. La distillation sous le vide de la pompe à palette (Eb/0,03 torr = 51°C) fournit l g d'exo-(hydroxy-1 n-propyl)-5 endo-méthyl-5 bicyclo[2,2,1]heptène-2. Rdt : 55% (rendement par rapport à la méthacroléine).

IR (film) (cm^{-1}) : 3400 (FF); 3070 (f); 1100 (m). SM : M⁺: 166 (m/e int. rel.) : 166 (0,7); 119 (12,3); 99 (20,0); 94 (10,9); 91 (17,5); 83 (19,2); 79 (22,7); 77 (10,5); 71 (13,6); 67 (32,5); 66 (100); 65 (12,9); 55 (18,5); 43 (16,9); 41 (22,8); 39 (16,3). RMN 'H (CDC1₃, 250 MHz) δ (ppm): 0,75 (IH, d.d, J = 12,0 Hz, J' = 2,8 Hz, H-6 endo); 0,81 (3H, s, CH3); 1,05 (3H, 't, J = 7,3 Hz,-CH2C<u>H</u>3); 1,28 - 1,50 (4H, m, -C<u>H</u>2CH3, H-7); 1,60 (IH, m, H-6 exo); 1,95 (IH, se, -OH); 2,76 (IH, se, H-4); 2,82 (IH, se, H-1); 3,39 (1H, 'd, J = 9,7 Hz,-C<u>H</u>(OH)C₂H5); 6,11 (2H, se, -CH=CH-). Analyse : calculée pour C₁₁H₁₈O : C: 79,52; H : 10,85; trouvée : C : 79,41; H : 10,95.

Dans un ballon tricol de 500 ml équipé d'une agitation mécanique, d'une ampoule à brome de 100 ml et d'un thermomètre basse température, on place, sous atmosphère d'argon, 4 ml (46 mmoles) de chlorure d'oxalyle en solution dans 100 mi de chlorure de méthylène anhydre. La solution est refroidie à -50° C puis on additionne goutte à goutte une solution de 6,8 ml (96 mmoles) de diméthylsulfoxyde dans 20 ml de chlorure de méthylène anhydre. La solution est refroidie à -50° C puis on additionne goutte à goutte une solution est agitée à -50° C pendant 5 mn puis on additionne goutte à goutte 6,64 g (40 mmoles) de l'alcool en solution dans 40 ml de chlorure de méthylène anhydre, sur une période de 15 mn. L'agitation est maintenue 20 mn supplémentaires à cette température puis 28 ml (200 mmoles) de triéthylamine sont additionnés goutte à goutte. La température est maintenue à -50° C pendant 5 mn avant de permette à la solution de revenir à température ambiante. On ajoute à la solution 150 ml d'eau. On récupère la phase organique et on extrait la phase aqueuse par du chlorure de méthylène (100 ml). Les phases organiques sont regroupées, lavées par 150 ml d'une solution aqueuse saturée de chlorure de sodium, séchées sur sulfate de magnésium et le solvant est évaporé sous pression réduite pour donner 6,66 g de cétone. Après distillation sous vide (Eb/20 torr = 97°C) on obtient 5,6 g de cétone <u>6c</u>. Rdt 85%.

IR (film) (cm⁻¹) : 3060 (m) ; 1710 (FF) ; 1575 (f). SM : M⁺ 164 (m/e int. rel.) : 164 (12,3) ; 107 (15,3); 99 (66,6) ; 91 (13,2) ; 79 (24,0) ; 69 (11,0) ; 67 (11,4) ; <u>66</u> (100) ; 65 (10,5) ; 57 (12,8) ; 43 (14,0) ; 41 (20,4); 39 (15,0). RMN ¹H (CDCl₃, 250 MHz), δ (ppm) : 0,80 (1H, d.d., J = 11,7 Hz, J' = 2,9 Hz, H-3 endo) ; 1,09 (3H, s,-CH3) ; 1,10 (3H, t, J = 7,3 Hz, -CH2CH3) ; 1,20 (1H, m, H-7) ; 1,41 (1H, m, H-7) ; 2,43 (1H, d,d, J = 11,7 Hz, J' = 3,9 Hz, H-3 exo) ; 2,60 (2H, q, J = 7,3 Hz, -CH2CH3); 2,81 (1H, se, H-4) ; 3,01 (1H, se, H-1) ; 6,10 (1H, m, -CH=CH-); 6,26 (1H, m, -CH=CH-). Analyse : calculée pour C₁₁H₁₆O : C : 80,49; H : 9,76 ; trouvée : C : 80,24 ; H : 9,74.

(Oxa-7 bicyclo[2,2,1]heptène-5) yl-2 éthyl cétone 6d

La séquence utilisée pour obtenir cette cétone est identique à celle utilisée pour la synthèse de la cétone 6c. La lère étape consiste en une addition de Diels-Alder entre l'acroléine et le furanne réalisée selon le mode opératoire décrit précédemment. Cependant, la réaction est réalisée sans solvant à -40°C [27,2 g (400 mmoles) de furanne, 20 ml (300 mmoles) d'acroléine, fraîchement distillés, 4 g (30 mmoles) de chlorure d'aluminium]. Après 30 mn à -40°C la réaction est bloquée par addition de 3,7 ml (45 mmoles) de triéthylamine.

L'aldéhyde obtenu est instable, ce qui oblige d'une part à utiliser un bain à 15 - 20°C pour évaporer le solvant et d'autre part à l'utiliser rapidement pour l'étape suivante, sans purification. On obtient 22,4 g d'oxa-7 formyle-2 bicyclo[2,2,1]heptène-5 sous forme d'un mélange de deux diastéréo-

isomères exo et endo dans la proportion 5/l. Les caractéristiques spectrales de l'isomère exo suivent :

IR (film) (cm⁻¹) : 3080 (f) ; 1720 (FF) ; 1020 (F). RMN ¹H (CDCl₃, 90 MHz) δ (ppm) : 1,46 (IH, d.d, J = 11,9 Hz, J' = 8,5 Hz, H-3 exo) ; 1,80 - 2,45 (2H, m, H-2, H-3 endo) ; 5,06 - 5,12 (2H, m, H-1, H-4); 6,47 (2H, se, -CH=CH-) ; 9,60 (IH, d, J = 3,3 Hz, -CHO).

La proportion relative de chaque isomère est déterminée par intégration des signaux des protons aldéhydiques. Pour l'isomère endo : δ = 9,40 ppm, d, J = 3,3 Hz.

Par addition de 0,25 moles de bromure d'éthyl magnésium en solution dans l'éther sur les 22,4 g d'aldéhyde, on obtient après extraction au chlorure de méthylène 28,25 g de produit brut qui est distillé sous le vide de la pompe à palette (Eb/0,03 torr = 82° C) pour donner 18,85 g d'oxa-7 (hydroxy-1 n-propyl)-5 bicyclo[2,2,1]heptène-2 sous forme d'un mélange de 4 stéréoisomères. Le rendement pour les deux étapes est de 37,4%. Les différents stéréoisomères sont séparables par chromatographie sur silice. Eluant : CH₂Cl₂-AcOEt : 80/20. On peut séparer ainsi 3 produits qui sont par ordre d'élution : un des diastéréoisomères exo, l'autre diastéréoisomère exo puis le mélange des deux diastéroisomères endo. Les caractéristiques spectrales des isomères exo suivent :

IR (film) (cm^{-1}) : 3450 (FF); 3080 (f); 1165 (F); 1090 (m); 1040 (F); 1010 (F). RMN ¹H (CDCl₃, 250 MHz) δ (ppm): 1: 0,96 (3H, t, J = 7,5 Hz, CH3); 1,31 - 1,50 (3H, m, H-5, H-6); 1,58 (2H, m, -CH2CH3); 2,60 (1H, se, -OH); 3,41 (1H, d.t, J = 8 Hz, J' = 3,5 Hz, -CH(OH)C_2H5); 4,94 (1H, d., J = 2,8 Hz, H-4); 5,05 (1H, s, H-1); 6,31 (2H, s, -CH=CH-). 2: 0,91 (3H, t, J = 7,5 Hz, CH3); 1,24 (1H, d.d., J = 11,5 Hz, J' = 7,8 Hz, H-6 exo); 1,45 (2H, q.d, J = 7,5 Hz, J' = 7,4 Hz, -CH2CH3); 1,69 (1H, d.d.d, J = 7,8 Hz, J' = 4,2 Hz, J'' = 3,8 Hz, H-5); 1,78 (1H, d.d.d, J = 11,5 Hz, J' = 4,6 Hz, J'' = 3,8 Hz, H-5); 1,78 (1H, d.d.d, J = 11,5 Hz, J' = 4,6 Hz, J'' = 3,8 Hz, H-6 endo); 2,86 (1H, se, -OH); 3,71 (1H, t.d, J = 7,4 Hz, J' = 4,2 Hz, -CH(OH)C_2H_5); 4,75 (1H, s, H-1); 4,92 (1H, d, J = 4,6 Hz, H-4); 6,31 (2H, m, -CH=CH-). Analyse : calculée pour C9H14O2 : C : 70,13; H : 9,09; trouvée: C : 69,87; H : 9,21.

Le mélange des diastéréoisomères exo est oxydé par la méthode de Swern (16) pour conduire à la cétone exo <u>6d</u> avec un rendement de 85%.

IR (film) (cm⁻¹) : 3080 (ff) ; 1715 (FF) ; 1120 (F) ; 1050 (m) ; 1020 (F). RMN 1 H (CDCl₃, 250 MHz) δ (ppm) : 1,08 (3H, t, J = 7,6 Hz, CH₃) ; 1,52 (1H, d.d, J = 11,5 Hz, J' = 8,5 Hz, H-3 exo) ; 2,02 (1H, d.d.d, J = 8,5 Hz, J' = 4,6 Hz, J'' = 3,1 Hz, H-3 endo) ; 2,46 - 2,62 (3H, m, -C<u>H</u>₂CH₃, H-2) ; 5,05 (1H, d, J = 4,6 Hz, H-4) ; 5,09 (1H, s, H-1) ; 6,40 (2H, se, -CH=CH-).

Mode opératoire général pour l'obtention des éthers d'énols triméthylsilyliques.

Dans un ballon bicol de 25 ml, muni d'un thermomètre basse température, on place sous atmosphère d'argon 170 μ l (1,2 mmole) de diisopropylamine (ou 250 μ l de 1,1,1,3,3,3 hexaméthyldisylazane ; 1,2 mmole) dans 2 ml de tétrahydrofuranne sec. La solution est refroidie à 0°C et on ajoute au goutte à goutte 735 μ l (1,1 mmole) de nBuLi en solution 1,5M dans l'hexane. Après 20 mn d'agitation, la solution est refroidie par un bain acétone-carboglace à -78°C dans le cas des cétones <u>6a</u>, <u>6b</u> et <u>6d</u> et à -40°C dans le cas de la cétone <u>6c</u>. I mmole de cétone en solution dans l ml de THF est ajoutée au goutte à goutte. Quand la déprotonation est terminée (20 mn pour <u>6a</u> et <u>6b</u>, 30 mn pour <u>6d</u>, 3 h pour <u>6c</u>) on additionne en solution dans l ml de tétrahydrofuranne sec à -78°C. L'agitation est poursuivie 5 mn à -78°C, puis on laisse la solution revenir à température ambiante. On ajoute alors 5 ml d'hexane et on coule la solution dans une ampoule à décanter contenant 10 ml d'une solution aqueuse saturée de bicarbonate de sodium. La phase organique est récupérée et la phase aqueuse est extraite par 10 ml d'éther. Les phases organiques sont regroupées et séchées sur sulfate de magnésium puis les solvants sont évaporés sous pression réduite.

Exo Z et E (triméthylsiloxy-l propène-l yl-l)-5 bicyclo [2.2.1]heptène-2 7a

Par action du 1,1,1,3,3,3 hexaméthyldisylylamidure de lithium, on obtient 211 mg (95%) de l'isomère Z seul.

1R (film) (cm⁻¹) : 3070 (m) ; 1670 (F) ; 1135 (m) ; 1090 (F) ; 1050 (FF). RMN ¹H (CDCl₃, 90 MHz) δ (ppm): 0,11 (9H, s, -Si(CH₃)₃) ; 1,45 (3H, d.d., J = 6,7 Hz, J' = 1,2 Hz, CH₃) ; 1,84 (1H, m) ;²2,42 (1H, m) ; 2,78 (2H, se, H-1, H-4) ; 4,55 (1H, q.d, J = 6,7 Hz, J' = 1,3 Hz, -((CH₃)₃SiO)C=C<u>H</u>(CH₃)) ; 6,02 (2H, se, -CH=CH-).

Par action du diisopropylamidure de lithium, on obtient 162 mg (73%) du mélange des isomères Z et E dans le rapport 53/47.

IR (film) (cm⁻¹) : 3070 (m) ; 1670 (F) ; 1655 (F) ; 1100 (F) ; 1090 (F) ; 1050 (FF). RMN ¹H (CDCl₃, 90 MHz) δ (ppm) : 0,06 (9H, E, s, -Si(CH₃)₃) et 0,11 (9H, Z, s, -Si(CH₃)₃) ; 1,06 - 1,34 (3H, m) ; 1,45² (3H, m, CH₃) ; 1,76 (IH, m) ; 2,27 (IH, m) ; 2,44 (IH, m) ; 2,76 (se), 2,82 (se) et 2,87 (se) (2H, H-I, H-4) ; 4,48 (IH, E, q, J = 6,9 Hz, -((CH₃)3SiO)C=C<u>H</u>(CH₃)) et 4,55 (IH, Z, q.d, J = 6,7 Hz, J'= 1,3 Hz, -(CH₃)3SiO)C=C<u>H</u>(CH₃)) ; 6,03 (2H, se, -CH=CH-).

Endo Z et E (triméthylsiloxy-l propène-l yl-l)-5 bicyclo[2,2,1]heptène-2 7b

Par action du 1,1,1,3,3,3 hexaméthyldisylylamidure de lithium, on obtient 210 mg (95%) de l'isomère Z seul.

IR (film) (cm⁻¹) : 3070 (m) ; 1680 (F) ; 1195 (F) ; 1135 (m) ; 1085 (F) ; 1050 (FF). RMN ¹H (CDCL₃, 90 MHz) δ (ppm) : 0,12 (9H, s, -Si(CH₃)₃) ; 0,90 (IH, m) ; 1,20 (2H, m) ; 1,37 (3H, d.d., J = 6,7 Hz, ³J' = 1,2 Hz, CH₃) ; 1,70 (IH, m) ; 2,54 (IH, m) ; 2,76 (IH, se, H-4) ; 2,94 (IH, se, H-1) ; 4,24 (IH, q.d., J = 6,7 Hz, J' = 1,3 Hz, -((CH₃)₃SiO)C=CH(CH₃)) ; 5,81 (IH, m, -CH=CH-) ; 6,08 (IH, m, -CH=CH-).

Par action du diisopropylamidure de lithium, on obtient 160 mg (72%) du mélange des isomères Z et E dans le rapport 85/15.

La présence de l'isomère E est caractérisée en IR par une absorption à 1660 cm⁻¹ et en RMN du proton par les signaux des protons : triméthylsilylique : 0,03 ppm, s ; et vinylique : 4,14 ppm, q : J = 6,8 Hz.

2532

Exo Z (triméthylsiloxy-l propène-l yl-l)-5 endo méthyl-5 bicyclo[2,2,1]heptène-2 7c

Par action du 1,1,1,3,3,3 hexaméthyldisylylamidure de lithium, on obtient 177 mg (75%) de l'isomère Z seul. Par action du diisopropylamidure de lithium, on obtient 168 mg (71%) de l'isomère Z seul.

IR (film) (cm⁻¹) : 3070 (m) ; 1665 (F) ; 1160 (m) ; 1110 (m) ; 1075 (F). SM : M⁺ : 236 (m/e int. rel.) : 236 (10,9) ; 171 (16,0) ; 170 (85,3) ; 169 (13,1) ; 156 (13,7) ; 155 (100) ; 142 (14,4) ; 141 (85,9) ; 140 (16,0); 75 (70,3) ; 74 (21,1) ; 73 (67,8). RMN ⁺H (CDCl₃, 250 MHz) δ (ppm) : 0,10 (9H, s, Si(CH₃)₃) ; 0,74 (1H,d.d, J = 11,6 Hz, J' = 2,2 Hz, H-6 exo) ; 0,95 (3H, s, CH₃) ; 1,27 (2H, m, H-7) ; 1,50 (3H, d, J = 6,8 Hz, -((CH₃)₃SiO)C=C<u>H</u>(CH₃)) ; 1,97 (1H, d.d, J = 11,6Hz, J' = 4,0 Hz, H-6 endo) ; 2,70 (1H, se, H-4) ; 2,76 (1H, se, H-1) ; 4,68 (1H, q, J = 6,8 Hz) ; 6,03 (1H, m, -C<u>H</u>=CH-) ; 6,12 (1H, m, -CH=C<u>H</u>-). RMN ⁻¹C (CDCl³ 60 MHz) : 1,07 ; 11,65 ; 26,20 ; 38,49 ; 43,13 ; 48,89 ; 49,68 ; 98,65 ; 134,80 ; 137,66 ; 159,04.

Oxa-7 exo Z et E (triméthylsiloxy-l propène-l yl-l)-5 bicyclo[2,2,1]heptène-2 7d

Par action du 1,1,1,3,3,3 hexaméthyldisylylamidure de lithium, on obtient 210 mg (94%) de l'isomère Z seul.

IR (film) (m^{-1}) : 3080 (f); 1680 (F); 1185 (F); 1090 (F); 1050 (FF); 1020 (F). RMN ¹H (CDC13, 90 MHz) δ (ppm): 0,12 (9H, s, -Si(CH3)3); 1,50 (3H, d, J = 6,7 Hz, CH3); 1,70 (IH, m); 2,05 (IH, m); 2,45 (IH, m); 4,68 (IH, q, J = 6,7 Hz, -((CH3)3SiO)C=CH(CH3)); 4,83 (IH, s, H-I); 4,94 (IH, d, J = 4,6 Hz, H-4); 6,16 (2H, s, -CH=CH-).

Par action du diisopropylamidure de lithium, on obtient 214 mg (96%) du mélange des isomères Z et E dans le rapport 50/50.

IR (film) (cm¹): 3080 (f); 1680 (m); 1660 (m); 1185 (F); 1100 (F); 1090 (F); 1050 (FF); 1020 (F). RMN 'H (CDCl₃, 250 MHz) δ (ppm): 0,12 (9H, Z, s, -Si(CH₃)₃) et 0,14 (9H, E, s, -Si(CH₃)₃); 1,42 (3H, E, d, J = 6,7 Hz, CH₃) et 1,50 (3H, Z, d, J = 6,7 Hz, CH₃); 1,64 - 1,82 (1H, m); 2,02 (1H, m); 2,45 (1H, m); 4,64 (1H, E, q, J = 6,7 Hz) et 4,68 (1H, Z, q, J = 6,7 Hz) [-(CH₃)₃SiO)C=C<u>H</u>(CH₃)]; 4,75 (1H, E, s, H-1) et 4,83 (1H, Z, s, H-1); 4,94 (1H, m, H-4); 6,31 (2H, m, -CH=CH-).

Mode opératoire général par les réactions de consensation aldolique entre les aldéhydes et les énolates lithiés des cétones 6a, 6b et 6c

a) Obtention des aldols

Dans un ballon bicol de 25 ml muni d'un thermomètre basse température, on place sous atmosphère d'azote 250 μ l (1,2 mmoles) de 1,1,3,3,3 hexaméthyldisylazane dans 2 ml de THF anhydre. La solution est refroidie à 0°C et on ajoute goutte à goutte 1,1 mmole de nBuLi en solution 1,5M dans l'hexane. Après 10 mn d'agitation à cette température, la solution est refroidie par un bain acétone-carboglace (à -78°C pour les cétones <u>6a</u> et <u>6b</u> et à -40°C pour la cétone <u>6c</u>) et 1 mmole de la cétone, en solution dans 1 ml de THF est ajoutée goutte à goutte. Lorsque la déprotonation est terminée (20 mn pour <u>6a</u> et <u>6b</u>, 3 h pour <u>6c</u>), on additionne à -78°C 1,5 mmole d'aldéhyde puis 10 ml d'une solution saturée de chlorure d'ammonium (le temps de réaction entre l'énolate et l'aldéhyde est ajusté en fonction de la réactivité de l'énolate et de l'aldéhyde et est indiqué dans la partie théorique). Puis on laisse la solution revenir à température ambiante. On reprend alors le mélange réactionnel par 10 ml d'eau et 10 ml d'éther. La phase organique est récupérée et la phase aqueuse est extraite à l'éther (3 x 10 ml). Les phases organiques résidu est purifié par flash chromatographie. Eluant : hexane-éther: 80/20.

b) Obtention des β -céto éthers triméthylsilyliques

Voie l : par protection de la fonction hydroxy de l'aldol

Dans un ballon monocol de 25 mi, on place sous atmosphère d'azote, l mmole d'aldol, 210 μ l (1,5 mmole) de triéthylamine et 70 μ l (0,1 mmole) de DMSO en solution dans 10 ml d'éther. Puis on ajoute à température ambiante, 190 μ l (1,5 mmole) de chlorure de triméthylsilyle goutte à goutte. La réaction est suivie par chromatographie sur couche mince (éluant : hexane-éther : 90/10). Au bout de 2 h la réaction est terminée. La solution est alors coulée dans une ampoule à décanter et lavée par une solution saturée de chlorure de sodium (3 x 10 ml). La phase organique est séchée sur sulfate de magnésium et le solvant est extrait sous pression réduite. Le produit est purifié par flash chromatographie. Eluant: hexane-éther : 95/5.

Voie 2 : Obtention directe à partir des cétones

Le mode opératoire est identique pour l'obtention des aldolates de lithium à celui utilisé pour l'obtention des aldols. Cependant, après réaction de l'aldéhyde, on additionne le mélange de 190 μ l (l,5 mmole) de chlorure de triméthylsilyle et de 200 μ l (l,5 mmole) de triéthylamine en solution dans l ml de THF anhydre. L'agitation est poursuivie 5 mn à basse température puis on laisse la solution revenir à température ambiante. On additionne alors 5 ml d'hexane et on coule la solution dans une ampoule à décanter contenant 10 ml d'une solution saturée de bicarbonate de sodium. La phase organique est récupérée et la phase aqueuse est extraite à l'éther (3 x 10 ml). Les phases organiques sont regroupées, séchées sur sulfate de magnésium et les solvants sont évaporés sous pression réduite. Le résidu est purifié par flash chromatographie. Eluant : hexane-éther: 95/5.

Exo (hydroxy-3 méthyl-2 phényl-3 propanone-l yl-l)-5 bicyclo[2,2,1]heptène-2 8a

Ce composé est obtenu à partir de la cétone <u>6a</u> sous forme d'un mélange de stéréoisomères où les isomères syn sont prépondérants, avec un rendement de 81%. Les isomères syn peuvent être obtenus purs par flash chromatographie (54%).

IR (film) (cm⁻¹) : 3460 (FF) ; 3140 (ff) ; 3070 (m) ; 3040 (m) ; 1960 (ff) ; 1880 (ff) ; 1830 (ff) ; 1700 (FF) ; 1140 (F) ; 1015 (FF). RMN H (CDCl₃, 90 MHz) δ (ppm) : 1,11 et 1,14 (3H, d, J = 6,6 Hz, CH3) ; 1,25 (IH, se) ; 1,53 et 1,84 (IH, m) ; 2,24 (m) et 2,55 (se) (3H) ; 2,70 - 3,12 (3H, m) ; 3,42 (IH, 3m, -OH); 4,93 et 4,98 (IH, d, JHAHB = 5,7 Hz, HB) ; 6,04 (2H, m, -CH=CH-) ; 7,24 (5H, se, Ph).

Les isomères anti sont caractérisés par les déplacements chimiques du proton HB et par la constante de couplage JHAHB : δ =4,73 et 4,76 ppm, d : J= 8,5 Hz.

La prépondérance des isomères syn peut également être mise en évidence par l'étude du spectre du 13C du mélange. La présence de quatre diastéréoisomères en proportions variables rend le spectre très complexe, néanmoins les déplacements chimiques de certaines carbones ont pu être déterminés :

	C (carbinol)	C (méthyl)
Syn	73,70 et 73,84	11,46 et 11,55
Anti	76,83	15,01

Endo (hydroxy-3 méthyl-2 phényl-3 propanone-l yl-l)-5 bicyclo[2,2,1]heptène-2 8b, 9b

Obtenu à partir de la cétone 6b sous forme d'un mélange de stéréoisomères, où les isomères syn sont prépondérants, avec un rendement de 86%.

IR (film) (cm⁻¹): 3460 (FF); 3140 (ff); 3070 (m); 3040 (m); 1960 (ff); 1890 (ff); 1820 (ff); 1705 (FF); 1130 (m); 1090 (F); 1040 (F). RMN H (CDCl₂, 90 MHz) δ (ppm): 0,78 - 1,80 (8H, m, dont à 1,04 d, J = 6,8 Hz et à 1,09 d, J = 6,8 Hz); 2,75 - 3,25 (3H, m); 3,50 (IH, m, -OH); 4,67 et 4,76 (IH, anti, d, J = 8,0 Hz); 4,91 et 4,98 (IH, syn, d, J = 5,2 Hz); 5,42 et 5,81 (IH, m, -CH=CH-); 6,13 (IH, m, -CH=CH-); 7,32 (5H, se, Ph).

Exo (syn 2,3 hydroxy-3 méthyl-2 phényl-3 propanone-1 yl-l)-5 endo méthyl-5 bicyclo[2,2,1]heptène-2 8c

Obtenu à partir de la cétone $\underline{6c}$ sous forme des seuls stéréoisomères syn avec un rendement de 85%, le temps de réaction à -78°C entre l'énolate lithié de la cétone $\underline{6c}$ et le benzaldéhyde étant de 5 mn. Ce composé a également été préparé en quantités plus importantes à partir de 15 mmoles (2,46 g) de cétone 6c et de 18 mmoles (1,2 éq.) de benzaldéhyde avec un temps de réaction de 10 mn. On obtient ainsi de 3,16 g à 3,40 g d'hydroxycétone (78% à 84%).

IR (film) (cm⁻¹) : 3440 (FF) ; 3140 (ff) ; 3070 (F) ; 3040 (m) ; 1960 (ff) ; 1890 (ff) ; 1815 (ff) ; 1700 (FF) ; 1025 (m). SM : M⁺ 270 (Désorption-Ionisation chimique NH3) (m/e int. rel.) : 270 (M⁺+20, 10,1); 289 (M⁺+19, 21,4) ; <u>288</u> (M⁺+18, 100) ; 271 (M⁺+1, 50,9). RMN ⁺H (CDCl₃, 250 MHz) & (ppm) : 0,66 (IH, m, H-6 exo) ; 0,94 (s) et 1,00 (s) (3H, CH3) ; 1,14 (d) et 1,15 (d) (3H, J = 6,7 Hz, CH3) ; 1,21 (IH, m); 1,34 (IH, m) ; 2,26 (d.d) et 2,38 (d.d) (IH, J = 12,0 Hz, J' = 3,40 Hz, H-6 endo) ; 2,72 (IH, se) ; 2,86 (se) et 2,94 (se) (IH) ; 3,24 (IH, m) ; 3,65 (IH, m, -OH) ; 4,91 (d) et 4,92 (d) (IH, J = 4,0 Hz, H-9) ; 6,02 (IH, m, -CH=CH-) ; 6,20 (IH, m, -CH=CH-); 7,14 - 7,32 (5H, m, Ph). RMN ¹⁻³C (CDCl₃, 60 MHz) : 12,68 et 12,90 (C-11) ; 22,59 et 22,72 (C-12) ; 34,64 et 34,75 (C-6) ; 42,67 (C-9) ; 48,19 et 48,59 (C-1, C-4, C-7) ; 56,83 et 56,07 (C-5) ; 73,89 et 74,07 (C-10) ; 126,05, 127,17, 127,92 et 141,84 (Ph) ; 132,91 (C-6) ; 136,17 (C-5) ; 219,61 (C-9).

L'instabilité thermique de ce composé ne nous a pas permis d'en obtenir une bonne analyse.

Exo (méthyl-2 phényl-3 triméthylsiloxy-3 propanone-l yl-l)-5 bicyclo [2,2,l] heptène-2 (R' = Ph) 10a, 11a

Ce composé peut être obtenu par la voie l (74%) ou la voie 2 (70%) sous forme d'un mélange de stéréoisomères où les isomères syn sont prédominants comme pour l'aldol initial. Les stéréoisomères syn sont obtenus purs par la voie l'à partir des aldols syn (83%).

IR (film) (cm⁻¹) : 3140 (ff) ; 3070 (F) ; 3040 (m) ; 1950 (ff) ; 1890 (ff) ; 1815 (ff) ; 1705 (FF) ; 1090 (FF); 1050 (FF) ; 1030 (F) ; 1015 (F). SM : M 328 (m/e int. rel.) : 328 (0,9) ; 180 (26,7) ; <u>179</u> (100) ; 75 (28,3); 73 (75,3) ; 55 (17,3). RMN ¹H (CDCl₂, 90 MHz) δ (ppm) : 0,17 (9H, s) ; 0,72 (1H, d.d, J = 9,7 Hz, J' = 6,9 Hz) ; 0,95 (1H, se) ; 1,30 - 1,50 (4H, m, dont d, 3H, J = 6,8 Hz à 1,40) ; 1,88 (1H, m) ; 2,09 (1H, m) ; 2,55 - 3,10 (3H, m) ; 4,95 (d) et 4,99 (d) (1H, J = 8,5 Hz, HB) ; 6,00 (2H, se, -CH=CH-) ; 7,35 -760 (5H m) : der informant der antipier en enterprise der antipier der an 7,60 (5H, m). Les isomères anti sont caractérisés par le déplacement chimique des signaux du proton HB : δ =4,86 et 4,93 ; d : J = 9,5 Hz.

Endo (méthyl-2 phényl-3 triméthylsiloxy-3 propanone-l yl-l)-5 bicyclo [2,2,1] heptène-2 (R' = Ph) 10b, 115

Ce composé est obtenu par la voie 1 (83%) ou la voie 2 (77%) sous forme d'un mélange de stéréoisomères où les isomères syn sont prédominants comme pour les aldols initiaux.

IR (film) (cm^{-1}) : 3140 (ff); 3070 (m); 3040 (m); 1950 (ff); 1890 (ff); 1820 (ff); 1705 (FF); 1140 (F); 1090 (FF); 1035 (F). RMN ¹H (CDC1₂, 90 MHz) (ppm): 0,10 (s) et 0,23 (s) (9H anti) et 0,19 (s) et 0,22 (s) (9H syn); 0,89 (IH, d.d, J = 7,2 Hz, J' = 2,8 Hz); 1,10 - 2,00 (6H, m, dont à 1,34 et 1,43, d, J = 6,8 Hz); 2,60 (IH, m); 2,88 - 3,60 (3H, m); 4,80 et 4,93 (IH, anti, d, J = 10 Hz) et 4,85 et 4,98 (IH, syn, d, J = 8,4 Hz); 5,84 - 6,42 (2H, m, -CH=CH-); 7,40 - 7,63 (5H, m, Ph).

Exo (syn 2,3 méthyl-2 phényl-3 triméthylsiloxy-3 propanone-1 yl-1)-5 endo méthyl-5 bicyclo[2,2,1]heptène-2 (R' = Ph) 10c

Ce composé est obtenu à partir de la cétone 6c par la voie 2. Comme dans le cas de l'aldol seul les stéréoisomères syn sont obtenus avec un rendement de 82% pour un temps de réaction de 5 mn.

IR (film) (cm⁻¹) : 3095 (f) ; 3070 (F) ; 3040 (m) ; 1950 (ff) ; 1890 (ff) ; 1810 (ff) ; 1700 (FF) ; 1090 (FF); 1065 (FF); 1020 (FF). SM : M⁺ 342 (m/e int. rel.) : 342 (0,6); 277 (17,3); 236 (12,2); 206 (12,3); 187 (10,1); 181 (31,0); $\frac{180}{1000}$ (100); 179 (94,4); 171 (13,1); 170 (17,5); 163 (12,6); 157 (23,2); 155 (19,3); 117 (13,7); 107 (37,0); $\frac{105}{105}$ (13,9); 91 (37,6); 79 (61,7); 77 (21,1); 75 (82,8); 74 (29,0); 73 (95,6); 69 (72,5) ; 66 (46,6) ; 65 (12,0) ; 45 (25,4) ; 41 (58,9) ; 39 (13,0). RMN l H (CDCl₂, 250 MHz) δ (ppm) : 0,12 (s) et 0,14 (s) (9H, Si(CH3)3) ; 0,44 (d.d) et 0,60 (d.d) (IH, J = 12 Hz, J' = 3,0 Hz) ; 0,58 (s) et 0,81 (s) (3H, CH3) ; 1,01 (2H, m) ; 1,38 (d) et 1,42 (d) (3H, J = 6,8 Hz, CH3) ; 1,83 et 2,44 (d.d) (IH, J = 12 Hz, J' = 3,8 Hz) ; 2,38 (se), 2,55 (se), 2,68 (se), 3,00 (se) (2H, H-I, H-4) ; 3,24 (IH, m, HA) ; 4,84 (IH, d, J = 9,0 Hz, HB) ; 5,96 (m) ; 6,02 (m) et 6,20 (m) (2H, -CH=CH-) ; 7,20 - 7,50 (5H, m, Ph).

Les β -triméthylsiloxy cétones suivantes ont été obtenues à partir des cétones <u>6a</u>, <u>6b</u> et <u>6c</u> par la voie 2 décrite précédemment. Le temps de réaction entre l'énolate lithié de la cétone et l'aldéhyde est ajusté en fonction de la réactivité de l'aldéhyde.

Exo (méthyl-2 triméthylsiloxy-3 heptanone-1 yl-1)-5 bicyclo[2,2,1]heptène-2 (R' = n-C, Ho) 10a, 11a

Obtenues à partir de la cétone 6a avec un rendement de 60% (sous forme d'un mélange de stéréoisomères où les isomères syn sont prépondérants). Le temps de réaction entre l'énolate et le valéraldéhyde est de 5 mn.

IR (film (cm⁻¹): 3140 (ff); 3060 (m); 1710 (FF); 1090 (FF); 1050 (FF). SM : M⁺ 308 (m/e int. rel.): 308 (1,1); 241 (10,7); 227 (30,8); 160 (23,1); 159 (100); 156 (13,5); 121 (23,6); 103 (12,1); 93 (19,3); 75 (47,6); 74 (13,6); 73 (95,8); 66 (30,8); 55 (56,8). RMN ¹H (CDCl₃, 250 MHz) δ (ppm): 0,03 (s) et 0,05 (s) (9H, anti, Si(CH3)3); 0,12 (s) et 0,16 (s) (9H, syn, Si(CH3)3); 0,88 (3H, m, CH3); 1,08 (3H, d, J = 6,8 Hz, CH3); 1,15 - 1,45 (9H, m); 1,54 (1H, m); 1,75 (m) et 1,95 (m) (1H); 2,51 (1H, m); 2,70 - 3,00 (2H, m); 3,84 (1H, m, HB); 6,11 (2H, se, -CH=CH-). Par irradiation, on peut déterminer la constante de couplage JHAHB pour l'isomère syn majoritaire; le signal du proton HB à 3,84 ppm devient deux doublets à 3,83 et 3,86 ppm avec JHAHB = 5,4 Hz.

Endo (méthyl-2 triméthylsiloxy-3 heptanone-1 yl-1)-5 bicyclo[2,2,1]heptène-2 (R' = $n-C_bH_0$) 10b, 11b

Obtenues à partir de la cétone 6b avec un rendement de 61% sous forme d'un mélange de stéréoisomères où les isomères syn sont prédominants. Le temps de réaction entre l'énolate et le valeraldéhyde est de 5 mn.

IR (film) (cm⁻¹) : 3070 (m) ; 1710 (FF) ; 1130 (F) ; 1090 (F) ; 1030 (FF). SM : M⁺ : 308 (m/e int. rel.); 308 (0,9) ; 227 (11,8) ; 160 (15,1) ; <u>159</u> (100) ; 121 (22,0) ; 103 (15,4) ; 93 (11,4) ; 75 (23,9) ; 73 (0,3) ; 66 (12,5) ; 55 (42,5). RMN ¹H (CDCI₂, 250 MHz) δ (ppm) : 0,07 (9H anti, s, Si(CH₃)₃) ; 0,12 (9H, syn, s, Si(CH₃)₃) ; 0,87 (3H, m, CH₃) ; 0,76 et 1,04 (3H, d, J = 7,0 Hz, CH₃) ; 1,17 - 1,48 (9H, m) ; 1,50 -1,78 (1H, m) ; 2,85 (2H, m) ; 3,18 (2H, m) ; 3,81 (1H, m HB) ; 5,70 (m) et 5,84 (m) (1H, -C<u>H</u>=CH-) ; 6,10 (IH, m, -CH=CH-).

Par irradiation, on détermine JHAHB = 7,2 Hz pour les isomères syn majoritaires.

Exo (syn 2,3 méthyl-2 triméthylsiloxy-3 heptanone-1 yl-1)-5 endo méthyl-5 bicyclo [2,2,1] heptène-2 (R' $= n - C_{\mu} H_{0} \frac{10c}{10c}$

Obtenues à partir de la cétone 6c avec un rendement de 63% sous forme des seuls stéréoisomères syn. Le temps de réaction entre l'énolate et le valeraldéhyde est de 20 mn.

IR (film) (cm^{-1}) : 3070 (f); 1700 (FF); 1140 (F); 1120 (F); 1105 (F); 1040 (FF); 1020 (FF). SM : M⁺ 322 (m/e int. rel.) : 322 (1,7); 241 (12,2); 159 (80,7); 155 (12,2); 107 (29,8); 91 (21,0); 79 (28,0); 77 (12,2); 75 (61,4); 74 (14,0); 73 (100); 69 (47,3); 66 (66,6); 55 (10,5); 45 (10,5); 41 (35,0). RMN H (CDC1, 250 MHz) δ (ppm): 0,13 (9H, s, -Si(CH3)3); 0,68 (IH, d.d, J= 12 Hz, J' = 2,4 Hz); 0,87 (3H, m); 1,02 - 1,18 (6H, m); 1,18- 1,47 (9H, m); 1,47 - 1,65 (IH, m); 2,51 (IH, m); 2,78 (IH, se); 3,03 (2H, m); 3,80 (IH, m, HB); 6,07 (IH, se, -CH=CH-); 6,21 (IH, se, -CH=CH-). Par irradiation, on détermine la constante de couplage JHAHB = 7,6 Hz.

Exo (syn 2,3 furfuryl-3 méthyl-2 triméthylsiloxy-3 propanone-l yl-l)-5 endo méthyl-5 bicyclo[2,2,1]heptène-2 (R' = furfuryle) 10c

Obtenues à partir de la cétone 6c avec un rendement de 79% sous forme des seuls stéréoisomères syn. Le temps de réaction entre l'énolate et le furfural est de 10 mn.

IR (111m) (cm⁻): 3070 (f); 1700 (FF); 1150 (m); 1080 (FF); 1000 (FF). SM : M⁺ 332 (m/e int. rel.): 332 (3,3); 196 (15,9); 170 (16,4); <u>169</u> (100); 79 (23,2); 75 (18,8); 69 (19,1); 66 (13,3); 41 (18,2). RMN ¹H (CDC1₃, 250 MHz) δ (ppm): 0,12 (s) et 0,14 (s) (9H, -Si(CH3)3); 0,57 (d.d) et 0,63 (d.d) (IH, J = 11,4 Hz, J² = 2,8 Hz); 0,72 (s) et 0,92 (s) (3H, CH3); 1,00 - 1,26 (2H, m); 1,34 (d) et 1,37 (d) (3H, J = 6,4 Hz, CH3); 2,01 (d.d) et 2,50 (d.d) (IH, J= 11,4 Hz, J' = 3,4 Hz); 2,61 (se), 2,68 (se), 2,74 (se) et 3,13 (se) (2H); 3,61 (IH, m, HA); 4,85 (d) et 4,86 (d) (IH, JHAHB= 9,9 Hz, HB); 6,00 - 6,33 (4H, m); 7,38 (IH, s).

Exo (syn 2,3 syn 3,4 diméthyl-2,4 phényl-4 triméthylsiloxy-3 butanone-1 yl-1)-2 endo méthyl-2 bicyclo[2,2,1] heptène-5 14

Ce composé est obtenu à partir de la cétone 6c avec un rendement de 54% sous forme des seuls stéréoisomères syn 2-3 syn-3,4. Le temps de réaction entre l'énolate et l'hydratropaldéhyde est de 20 mn.

IR (film) (cm^{-1}) : 3140 (ff); 3070 (f); 3040 (f); 1950 (ff); 1880 (ff); 1810 (ff); 1745 (m); 1700 (FF); 1130 (FF); 1100 (FF); 1055 (F); 1020 (FF); 1000 (FF). SM : M⁺ 370 (m/e int. rel.): 265 (28,4); 207 (10,9); 135 (65,6); <u>107</u> (100); 105 (14,9); 79 (15,3); 75 (16,4); 73 (25,5); 69 (61,0); 41 (16,5). RMN 'H (CDC1₃, 250 MHz) δ (ppm): 0,09 (s) et 0,10 (s) (9H, Si(CH3)3); 0,76 (1H, m); 1,10 (s) et 1,12 (s) (3H, CH3); 1,23 (d) et 1,24 (d) (3H, J = 6,7 Hz, CH3); 1,41 (d) et 1,42 (d) (3H, J = 6,7 Hz, CH3); 2,48

(d.d) et 2,52 (d.d) (IH, J = 12,0 Hz, J' = 3,9 Hz) ; 2,75 - 2,91 (m) et 3,05 (se) (3H) ; 3,23 (IH, q.d, J = 6,7 Hz, J' = 6,6 Hz) ; 4,10 - 4,20 (IH, m) ; 6,13 (IH, m, -CH=CH-) ; 6,32 (IH, m, -CH=CH-) ; 7,23 - 7,48 (5H, m, Ph).

Réactions de condensation aldolique à partir de la cétone 6d

Les réactions de condensation aldolique entre l'énolate lithié de la cétone <u>6d</u> et le benzaldéhyde ont été réalisées en solution dans le THF, soit en présence de tétraméthyléthylènediamine (TMEDA), soit en présence d'un acide de Lewis : Znl2. Les modes opératoires utilisés pour obtenir les aldols ou les β -triméthylsiloxy cétones sont semblables à ceux développés précedemment. La déprotonation de la cétone <u>6d</u> est réalisée à -78°C en 30 minutes puis 290 µl (2 mmoles) de TMEDA ou 320 mg (1 mmole) de Znl2 sont ajoutés et la solution est agitée 5 mn avant l'addition de benzaldéhyde. Le temps de réaction entre l'énolate et le benzaldéhyde est de 45 mn quand l'additif est le TMEDA et 20 mn lorsqu'il s'agit de Znl₂. Dans le cas où l'additif est TMEDA, l'hydrolyse par une solution aqueuse saturée de chlorure d'ammonium conduit à l'aldol, alors que l'addition du mélange de chlorure de triméthylsilyle et de triéthylamine (1/1) en solution dans le THF conduit à la β -triméthylsiloxycétone. Dans le cas où l'additif est Znl2, la β -triméthylsiloxycétone est obtenue par addition du mélange de chlorure de triméthylsilyle et de triéthylamine (1/1) en solution dans le THF suivie de l'addition de lo0 µl (25 mmoles) de pyridine. L'agitation est maintenue 5 mn à -78°C avant de permettre à la solution de revenir à température ambiante. Le produit brut est filtré sur florisil afin d'éliminer les sels de zinc restants.

Oxa-7 exo (hydroxy-3 méthyl-2 phényl-3 propanone-1 yl-1)-5 bicyclo [2,2,1] heptène-2 8d, 9d

Obtenus par condensation aldolique à partir de la cétone <u>6d</u> en présence de TMEDA (Rdt : 68%). Les stéréoisomères syn sont obtenus de façon majoritaire.

IR (film) cm⁻¹) : 3480 (FF) ; 3090 (ff) ; 3070 (f) ; 3030 (f) ; 1710 (F) ; 1070 (F) ; 1020 (F). RMN 1 H (CDCl₂, 250 MHz) δ (ppm) : 0,90 (m) et 1,14 (m) (3H, CH3) ; 1,25 - 1,50 (1H, m) ; 1,79 (m) ; 1,91 (m) et 2,04 (m) (1H) ; 2,39 (m) ; 2,50 (m) et 2,60 (m) ; (1H) ; 3,00 (m) et 3,10 (m) (1H) ; 3,30 (1H, se, -OH); 4,64 - 5,12 (3H, m) ; 6,32 (2H, m, -CH=CH-) ; 7,30 (5H, m, Ph).

Oxa-7 exo (méthyl-2 phényl-3 triméthylsiloxy-3 propanone-l yl-l)-5 bicyclo [2,2,l] heptène-2 10d, 11d

Les β -triméthylsiloxycétones <u>10d</u> et <u>11d</u> ont été obtenues soit par protection des aldols (Rdt : 80-85%), soit directement à partir de la cétone <u>éd</u> en présence de TMEDA (Rdt : 66%) ou en présence de ZnI2 (Rdt: 58%). Dans tous les cas, les stéréoisomères syn sont majoritaires.

Diastéréoisomère syn : IR (film) (cm⁻¹) : 3090 (ff) ; 3070 (ff) ; 3030 (m) ; 1710 (FF) ; 1085 (F) ; 1060 (FF) ; 1025 (F). RMN ¹H (CDCl₂, 250 MHz) δ (ppm) : 0,14 (9H, s, -Si(CH₃)₃) ; 1,32 - 1,44 (4H, dont à 1,35 et 1,37 d, J = 7,1 Hz) ; 1,70 (m) et 1,91 (m) ; 2,18 (1H, m) ; 3,06 - 3,32 (1H, m) ; 4,70 (s) et 4,83 (s) (1H) ; 4,89 (d) et 4,90 (d) (1H, JHAHB = 8,5 Hz, H-B) ; 4,99 (d) et 5,03 (d) (1H, J = 4,6 Hz) ; 6,20 (se), 6,33 (se) et 6,50 (se) (2H, -CH=CH-) ; 7,38 (5H, m, Ph). Diastéréoisomère anti : IR (film) (cm⁻¹): 3070 (ff) ; 1710 (FF) ; 1120 (FF) ; 1025 (m). RMN ¹H (CDCl₃, 250 MHz) δ (ppm) : 0,03 (s) et 0,04 (s) (9H, -Si(CH₃)₃) ; 0,84 (d) et 0,90 (d) (3H, d, J = 7,2 Hz, CH₃) ; 1,56 (1H, d.d, J= 11,3 Hz, J' = 8,1 Hz); 2,38 (1H, m) ; 2,70 (1H, m) ; 3,23 (1H, m, HA) ; 4,79 (d) et 4,85 (d) (1H, JHAHB = 9,6 Hz, HB) ; 5,20 (IH, m) ; 5,32 (s) et 5,49 (s) (1H) ; 6,52 (2H, s, -CH=CH-) ; 7,45 (5H, m, Ph).

<u>Thermolyse des β -triméthylsiloxycétones</u>

Mode opératoire général pour la thermolyse des meta-triméthylsiloxycétones obtenues à partir des cétones 6a, 6b et 6c

Les β -triméthylsiloxycétones <u>10a</u> et <u>11a</u>, <u>10b</u> et <u>11b</u> et <u>10c</u> sont vaporisées sous un vide de 10^{-3} torr dans un four préalablement chauffé à 450°C. Le cyclopentadiène et la cétone α -méthyl β -triméthylsiloxy α ' éthylénique sont piégés dès la sortie du four dans un dewar refroidi à la température de l'azote liquide. Les produits sont récupérés en lavant les parois du dewar à l'éther. L'éther et le cyclopentadiène sont évaporés sous pression réduite et le produit brut est analysé par RMN du proton avant d'être purifié par chromatographie sur silice.

Mode opératoire général pour la thermolyse des β -triméthylsiloxycétones obtenues à partir de la cétone $\frac{6d}{6d}$

132 mg (1/2 mmole) de β -triméthylsiloxycétones <u>10d</u> et <u>11d</u> sont dissous dans 3 ml de toluène. La solution est chauffée au reflux (bain 120°C) pendant 30 mn. La solution est alors déposée directement sur 20 g de silice et chromatographiée. Eluant : Hexane-éther : 95/5.

Syn 4,5 et anti 4,5 méthyl-4 phényl-5 triméthylsiloxy-5 pentène-1 one-3 (R = H, R' = Ph) 12, 13

La thermolyse des β -triméthylsiloxycétones <u>10a</u> et <u>11a</u>, <u>10b</u> et <u>11b</u>, <u>10d</u> et <u>11d</u> obtenues à partir des énolates lithiés des cétones <u>6a</u> et <u>6b</u> suivant la méthode de thermolyse éclair (<u>10a</u> et <u>11a</u>, <u>10b</u> et <u>11b</u>) ou à ll0°C en phase liquide (<u>10d</u> et <u>11d</u>) conduit à <u>12</u> et <u>13</u> avec des rendements de 75 à 85%. L'isomère syn est toujours obtenu de façon majoritaire (le rapport syn/anti varie de 75/25 à 83/17).

IR (film) (cm^{-1}) : 3090 (m); 3060 (F); 3030 (F); 1675 (FF); 1180 (m); 1085 (FF); 1065 (FF); 1025 (FF). SM : M⁺ 262 (m/e int. rel.) : 262 (5,2); 180 (15,5); <u>179</u> (100); 14i (13,0); 75 (39,6); 73 (56,8); 55 (10,9). RMN ¹H (CDCl₃, 250 MHz) δ (ppm) : Isomère syn : 0,09 (9H, s, -Si(CH3)3); 1,24 (3H, d, J = 7,2 Hz, CH3); 3,20 (IH, d,q, J = 7,2 Hz, J' = 7,0 Hz, HA); 4,98 (IH, d, J = 7,0 Hz, HB); 5,66 (IH, d.d, J = 10,4 Hz, J' = 1,6 Hz, H-1); 6,11 (IH, d.d, J = 17,5 Hz, J' = 1,6 Hz, H-2); 7,32 (5H, m, Ph). Isomère anti : -0,01 (9H, s, -Si(CH3)3); 0,83 (3H, d, J = 7,2 Hz, CH3); 3,36 (IH, q.d, J = 9,3 Hz, J' = 7,2 Hz, HA); 4,89 (IH, d, J = 9,3 Hz, HB); 5,86 (IH, d.d, J = 7,2 Hz, CH3); 3,36 (IH, q.d, J = 9,3 Hz, J' = 7,2 Hz, HA); 4,89 (IH, d, J = 9,3 Hz, HB); 5,86 (IH, d.d, J = 7,2 Hz, CH3); 3,36 (IH, q.d, J = 9,3 Hz, J' = 7,2 Hz, HA); 4,89 (IH, d, J = 9,3 Hz, HB); 5,86 (IH, d.d, J = 7,2 Hz, CH3); 3,36 (IH, q.d, J = 9,3 Hz, J' = 7,2 Hz, HA); 4,89 (IH, d, J = 9,3 Hz, HB); 5,86 (IH, d.d, J = 7,2 Hz, CH3); 3,36 (IH, q.d, J = 9,3 Hz, J' = 7,2 Hz, HA); 4,89 (IH, d, J = 9,3 Hz, HB); 5,86 (IH, d.d, J = 7,2 Hz, CH3); 3,36 (IH, q.d, J = 9,3 Hz, J' = 7,2 Hz, HA); 4,89 (IH, d, J = 9,3 Hz, HB); 5,86 (IH, d.d, J = 7,2 Hz, CH3); 3,36 (IH, q.d, J = 9,3 Hz, J' = 7,2 Hz, HA); 4,89 (IH, d, J = 9,3 Hz, HB); 5,86 (IH, d.d, J = 9,3 Hz, CH3); 3,36 (IH, q.d, J = 9,3 Hz, J' = 7,2 Hz, HA); 4,89 (IH, d, J = 9,3 Hz, HB); 5,86 (IH, d.d, J = 9,3 Hz, CH3); 3,36 (IH, q.d, J = 9,3 Hz, J' = 7,2 Hz, HA); 4,89 (IH, d, J = 9,3 Hz, HB); 5,86 (IH, d.d, J = 9,3 Hz, CH3); 3,36 (IH, q.d, J = 9,3 Hz, J' = 7,2 Hz, HA); 4,89 (IH, d, J = 9,3 Hz, HB); 5,86 (IH, d.d, J = 9,3 Hz, CH3); 3,36 (IH, q.d, J = 9,3 Hz, J' = 7,2 Hz, HA); 4,89 (IH, d, J = 9,3 Hz, HB); 5,86 (IH, d.d, J = 9,3 Hz, CH3); 3,06 (IH, q.d, J = 9,3 Hz, HZ); 4,80 (IH, d.d, J = 9,3 Hz, HZ); 5,86 (IH, d.d, J = 9,3 Hz, CH3); 5,86 (

= 10,4 Hz, J' = 1,6 Hz, H-1); 6,36 (lH, d.d, J = 17,5 Hz, J' = 1,6 Hz, H-1); 6,59 (lH, d.d, J = 17,5 Hz, J' = 10,4 Hz, H-2); 7,43 (5H, m, Ph). RMN ¹⁵C (CDCl₃, 250 MHz) δ (ppm)^d : Isomère syn : -0,04 (Si(CH₃)₃); 12,85 (C-6); 52,15 (C-4); 75,99 (C-5); 135,81 (C-1); 203,83 (C-3). Isomère anti : -0,19 (Si(CH₃)₃); 13,86 (C-6); 51,28 (C-4); 77,93 (C-5); 136,96 (C-1); 203,83 (C-3). Analyse : calculée pour C_{15H22}O₂Si: C : 68,70; H : 8,40; trouvée : C : 68;65; H : 8,25 a) C-2 et Ph : déplacements non attribués.

Syn 4,5 diméthyl-2,4 phényl-5 triméthylsiloxy-5 pentène-1 one-3 12 (R = CH₃, R' = Ph)

La thermolyse de la β -triméthylsiloxycétone <u>10c</u> conduit à <u>12</u> sous forme de l'unique diastéréoisomère syn (Rdt : 80%).

IR (film) (cm⁻¹): 3090 (ff); 3070 (ff); 3040 (f); 1670 (FF); 1630 (f); 1085 (FF); 1070 (F); 1050 (m); 1030 (FF). SM : M⁺ 276 (m/e int. rel.): 276 (4,8); 180 (22); <u>179</u> (100); 170 (13,2); 75 (30,7); 73 (86,6); 45 (11,6); 41 (22,8). RMN 1H (CDCl, 90 MHz) δ (ppm): 0,09 (9H, s, -Si(CH3)3); 1,31 (3H, d, J = 6,6 Hz, CH3, C-4); 1,73 (3H, s, CH3, C-2); 3,63 (1H, d.q, J = 8,3 Hz, J' = 6,6 Hz, HA); 4,89 (1H, d, J = 8,3 Hz, HB); 5,65 (1H, se, H-1); 5,81 (1H, se, H-1); 7,37 (5H, se, Ph). Analyse : calculée pour C₁₆H₂₄O₂Si: C : 69,57; H : 8,70; trouvée : C : 69,28; H : 8,71.

Syn 4,5 et anti 4,5 méthyl-4 triméthylsiloxy-5 nonène-1 one-3 12, 13 (R = H, R' = n-C4H9)

La thermolyse des β -triméthylsiloxycétones <u>10a</u> et <u>11a</u>, <u>10b</u> et <u>11b</u> conduit à <u>12</u> et <u>13</u> sous forme d'un mélange de stéréoisomères où l'isomère syn est très prépondérant avec un rendement de 67-71%.

IR (film) (cm⁻¹) : 3100 (ff) ; 3050 (ff) ; 3020 (ff) ; 1680 (FF) ; 1615 (F) ; 1100 (FF) ; 1025 (FF). SM : M⁺ 242 (m/e int. rel.) : 242 (l,6) ; 227 (25,6) ; 185 (33,6); 160 (11,5) ; 159 (50,3) ; 156 (18,1) ; 141 (18,3); 103 (17,5) ; 75 (62,9) ; 74 (20,3) ; <u>73</u> (100) ; 69 (10,3) ; 55 (68,3) ; 45 (11,9). RMN ⁺H (CDCl₃, 250 MHz) δ (ppm) : Isomère syn : 0,09 (9H, s, -Si(CH3)3) ; 0,85 (3H, t. déformé, CH3, C-9) ; 1,08 (3H, d, J = 6,8 Hz, CH3, C-4) ; 1,29 (6H, m, -(CH2)3-) ; 2,89 (1H, q.d, J = 6,8 Hz, JHAHB = 6,0 Hz, HA) ; 3,91 (1H, m, H-B) ; 5,76 (1H, d.d, J = 10,4 Hz, J' = 1,7 Hz, H-1) ; 6,24 (1H, d.d, J = 17,6 Hz, J' = 1,7 Hz, H-1) ; 6,46 (1H, d.d, J = 17,6 Hz, J' = 10,4 Hz, H-2). Les déplacements chimiques de certains protons de l'isomère anti peuvent également être déterminés : -Si(CH3)3 : δ = 0,04 ppm, s ; -CH3,C-4 : δ = 0,99 ppm, d, J = 6,8 Hz ; H-2 : δ = 6,44 ppm, d.d, J = 17,6 Hz, J' = 10,4 Hz. Analyse : calculée pour C₁₃H₂₆O₂Si: C : 64,46 ; H : 10,74 ; trouvée : C : 64,40 ; H : 10,77.

Syn 4,5 diméthyl-2,4 triméthylsiloxy-5 nonène-1 one-3 12 (R = CH₂, R' = n-C₄H₂)

La thermolyse de la β -triméthylsiloxycétone <u>10c</u> conduit à <u>12</u> sous forme du seul stéréoisomère syn avec un rendement de 75%.

IR (film) (cm⁻¹) : 3090 (ff) ; 3040 (f) ; 3015 (f) ; 1680 (FF) ; 1620 (F) ; 1090 (FF) ; 1040 (F). RMN $^{\rm l}$ H (CDCl₃, 250 MHz) δ (ppm) : 0,08 (9H, s, -Si(CH₃)₃) ; 0,85 (3H, t déformé, CH₃, C-9) ; 1,08 (3H, d, J = 7,0 Hz, CH₃, C-4) ; 1,25 (6H,m, -(CH₂)₃-) ; 1,83 (3H, s, CH₃, C-2) ; 3,29 (1H, d.q, JH_{AHB} = 7,2 Hz, J = 7,0 Hz, HA) ; 3,86 (1H, m, HB) ; 5,77 (1H, s, H-1) ; 5,83 (1H, s, H-1). Analyse : calculée pour C₁₄H₂₈O₂Si: C : 65,63 ; H : 10,94 ; trouvée : C : 65,60 ; H : 10,91.

Syn 4,5 diméthyl-2,4 furfuryl-5 triméthylsiloxy-5 pentène-1 one-3 $\underline{12}$ (R = CH₂, R'= furfuryle)

La thermolyse de la β -triméthylsiloxy cétone <u>10c</u> conduit à <u>12</u> (Rdt : 95%). Seul le stéréoisomère syn est observable par RMN du proton.

IR (film) cm⁻¹) : 3100 (ff) ; 1675 (FF) ; 1035 (m) ; 1150 (m) ; 1080 (F) ; 1030 (F). SM : M⁺ 226 (m/e int. rel.) : 266 (4,9) ; 1,70 (14,7) ; 169 (83,6) ; 79 (11,0) ; 77 (11,4) ; 75 (30,3) ; 73 (100) ; 69 (19,2) ; 45 (15,9) ; 41 (45,4) ; 39 (12,9). RMN ⁺H (CDCl₂, 250 MHz) δ (ppm) : 0,08 (9H, s, $-\overline{Si}$ (CH3)3) ; 1,22 (3H, d, J = 6,9 Hz, CH3, C-4) ; 1,76 (3H, s, CH3, C-2) ; 3,81 (IH, d.q, JHAHB = 9,0 Hz, J' = 6,9 Hz, HA) ; 1H, d, JHAHB = 9,0 Hz, HB) ; 5,69 (1H, d, J = 1,0 Hz, H-1) ; 5,90 (1H, s, H-1) ; 6,10 (1H, d, J = 3,0 Hz) ; 6,22 (1H, d.d, J = 3,0 Hz, J' = 2,0 Hz) ; 7,30 (1H, d, J = 2,0 Hz).

Syn-4,5 syn-5,6 phényl-6 triméthyl-2,4,6 triméthylsiloxy-5 heptène-1 one-3 15

La thermolyse de la β -triméthylsiloxycétone <u>14</u> conduit à <u>15</u> (Rdt : 95%). Un seul stéréoisomère est observable en RMN du proton et en chromatographie en phase vapeur sur colonne capillaire.

IR (film) (cm⁻¹) : 3090 (ff) ; 3070 (f) ; 3040 (f) ; 1745 (m) ; 1680 (FF) ; 1110 (FF) ; 1060 (FF) ; 1030 (FF). SM : M⁺ 304 (m/e ipt. rel.) : 304 (0,2) ; 200 (10,1) ; 199 (62,5); 105 (10,6) ; 75 (12,6) ; 73 (18,6); 69 (100) ; 41 (20,6). RMN ⁺H (CDCl₃, 250 MHz) δ (ppm) : 0,08 (9H, s, -Si(CH3)3) ; 1,20 (3H, d, J = 6,8 Hz, CH3) ; 1,94 (3H, s, CH3) ; 2,90 (1H, q.d, J = 6,8 Hz, J' = 6,4 Hz, HA); 3,36 (1H, q.d, J = 6,8 Hz, J' = 5,2 Hz, H-2) ; 4,20 (1H, d.d, JHBHA₃ = 6,4 Hz, JHBHC = 5,2 Hz, HB) ; 5,60 (1H, s, H-1); 5,75 (1H, se, H-1); 7,26 - 7,47 (5H, m, Ph). RMN ⁺C (CDCl₃, 60 MHz) δ (ppm) : 0,48 (-Si(CH3)3) ; 12,53, 16,08, 17,95 (CH3) ; 43,39, 43,83 (C-4, C-6) ; 79,53 (C-5) ; 124,42 (C-2) ; 126,48, 128,07, 128,36, 143,61 (Ph) ; 144,65 (C-1) ; 204,57 (C-3).

Exo-(syn-2,3 diméthyltertiobutylsiloxy-3 méthyl-2 phényl-3 propanone-1 yl-1)-5 endo méthyl-5 bicyclo[2,2,1] heptène-2 18

Obtenus par protection de la fonction hydroxyle des aldols 10c selon Hanessian (17) (Rdt : 95%).

IR (solution, CDCl₃) (cm⁻¹) : 3160 (f) ; 3070 (f) ; 3040 (f) ; 1950 (ff) ; 1890 (ff) ; 1820 (ff) ; 1700 (FF); 1090 (FF) ; 1070 (F) ; 1020 (m) ; 1010 (m) ; 1000 (F). SM : M⁺ 384 (m/e int. rel.) : 327 (0,4) ; 261 (45,8); 221 (40,4) ; 163 (11,2) ; 158 (12,5) ; 157 (100) ; 155 (59,1) ; 91 (11,2) ; 79 (14,5) ; 75 (75,4) ; 73 (62,9) ; 69 (22,0) ; 66 (12,0) ; 41 (19,5). RMN H (CDCl₃, 250 MHz) δ (ppm) : -0,20 et -0,18 (s)(3H, -Si(C<u>H</u>3)₂(t-C4H9)); 0,08 (s) et 0,10 (s) (3H, $-Si(CH_3)_2(t-C_4H_9)$); 0,38 (d.d) et 0,55 (d.d) (IH, J = 12,0 Hz, J' = 3,0 Hz); 0,51 (s) et 0,76 (s) (3H, CH_3); 0,92 (9H, s, $-Si(CH_3)_2(t-C_4H_9)$); 1,03 - 1,31 (2H, m); 1,34 (d) et 1,37 (d) (3H, J = 6,9 Hz, CH_3); 1,78 (d.d) et 2,40 (d.d) (IH, J = 12,0 Hz, J' = 3,8 Hz); 2,32 (se), 2,52 (se), 2,64 (se) et 2,95 (se) (2H); 3,23 - 3,40 (IH, m, HA); 4,81 (IH, d, J = 9,8 Hz, HB); 5,90 (m) et 5,98 (m) (IH, -CH=CH-); 6,13 (IH, m, -CH=CH-); 7,15 - 7,36 (5H, m, Ph).

Syn-4,5 diméthyl-2,4 diméthyltertiobutylsiloxy-5 phényl-5 pentène-1 one-3 20

Obtenu par thermolyse à 450°C (phase vapeur) de la β -diméthyltertiobutylsiloxycétone <u>18</u> (Rdt : 97%) sous forme du seul stéréoisomère syn.

IR (solution, CC14) (cm⁻¹) : 3160 (1) ; 3090 (f) ; 3070 (f) ; 3040 (f) ; 1950 (ff) ; 1880 (ff) ; 1820 (f) ; 1745 (m) ; 1675 (FF) ; 1090 (FF) ; 1070 (F) ; 1055 (F) ; 1030 (FF). SM : M⁺ 318 (m/e int. rel.) : 261 (24,2); 221 (48,5) ; 163 (12,9) ; 158 (13,6) ; 157 (100) ; 156 (13,7) ; 155 (92,6) ; 75 (88,2) ; 73 (54,4) ; 69 (15,0); (12,0). RMN ⁺ (CDC1₃, 250 MHz) δ (ppm) : -0,26 (3H, s, -Si(CH₃)₂(t-C4H₉)) ; 0,03 (3H, s, -Si(CH₃)₂(t-C4H₉)) ; 0,87 (9H, s, -Si(CH₃)₂(t-C4H₉)) ; 1,22 (3H, d, J = 6,8 Hz, CH₃ C-4) ; 1,64 (3H, s, CH₃ C-2); 3,53 (IH, d.q, JHAHB = 7,8 Hz, J⁺ = 6,8 Hz, HA) ; 4,77 (IH, d, JHAHB = 7,8 Hz, HB) ; 5,52 (IH, se, H-1); 5,68 (IH, s, H-1); 7,12 - 7,28 (5H, m, Ph). RMN ⁺ C (CDC1₃, 60 MHz) δ (ppm) : -4,42, -5,52, 18,07, 25,70 (-Si(CH₃)₂(t-C₄H₉)) ; 14,72 (C-6) ; 17,43 (C-7) ; 49,31 (C-4) ; 77,04 (C-5) ; 124,18 (C-1) ; 126,59, 127,14, 127,80, 144,25 (Ph) ; 143,65 (C-2) ; 204,55 (C-3).

Exo (syn-1,2 syn-2,3 méthyl-2 phényl-3 propanediol-1,3 yl-1)-5 endo méthyl-5 bicyclo[2,2,1]heptène-2 16

Le diol <u>16</u> est obtenu par réduction de la β -hydroxycétone <u>8c</u> par le borohydrure de sodium en présence de tributylbore (13a) (Rdt : 51%).

Le diol <u>l6</u> est également obtenu par réduction de la β -hydroxycétone <u>&c</u> par l'hydrure de diisobutylaluminium en solution dans le THF(14) (Rdt : 55%). On récupére également après chromatographie 25% de cétone <u>&c</u> non réduite.

Le mélange des diols <u>16</u> syn-1,2 syn-2,3 et <u>19</u> anti-1,2 syn-2,3 : 90/10 est obtenu par réduction de la β -hydroxycétone <u>8c</u> par l'hydrure de lithium et d'aluminium en solution dans l'éther (Rdt : 89%).

IR (film) (cm^{-1}) : 3420 (FF); 3070 (m); 3040 (f); 1950 (ff); 1890 (ff); 1820 (ff); 1100 (F); 1070 (F); 1025 (m). SM : M⁺ 272 (m/e int. rel.) : 254 (0,3); 189 (12,9); 148 (12,5); 119 (45,3); 118 (60,6); 117 (17,3); 108 (11,6); 107 (50,9); 105 (16,0); 91 (24,6); 83 (17,5); 82 (78,7); 80 (10,0); 79 (51,6); 77 (26,6); 71 (25,0); 69 (12,5); 67 (35,1); <u>66</u> (100); 43 (16,4); 41 (11,9). RMN ⁻¹H (CDC1₃, 250 MHz) δ (ppm) : 0,71 - 0,92 (7H, m); 1,26 - 1,68 (m) et 1,88 (d.d, J = 11,4 Hz, J'= 3,5 Hz) (3H)²; 2,10 (1H, m, HB); 2,50 (se); 2,78 (se) et 2,90 (se) (3H); 3,40 (1H, se, OH); 3,78 (s) et 3,80 (s) (1H, HA); 4,73 et 4,75 (IH, d, J = 3,5 Hz, HC); 6,06 - 6,22 (2H, m, -CH=CH-); 7,20 - 7,42 (5H, m, Ph). RMN ⁻¹C (CDC1₃, 60 MHz) δ (ppm) : 7,24; 20,03; 38,11; 41,93; 43,42; 47,45; 48,63; 65,80; 80,55; 82,13; 125,76; 127,08; 128,13; 136,35; 136,69; 143,13.

Exo (anti-l,2 syn-2,3 méthyl-2 phényl-3 propanediol-l,3 yl-l)-5 endo méthyl-5 bicyclo[2,2,1]heptène-2 19

Dans un ballon bicol de 25ml, équipé d'une ampoule à brome de 10 ml et d'un thermomètre basse température, on place sous atmosphère d'argon 57 mg (1,5 mmoles) d'hydrure de lithium et d'aluminium en suspension dans 3 ml d'éther anhydre. On additionne à -78°C une solution de 384 (1 mmole) de β -siloxycétone <u>18</u> dans 5 ml d'éther anhydre. L'agitation est maintenue 3 h à -78°C puis on laisse la solution revenir à température ambiante. Le mélange réactionnel est alors hydrolysé à 0°C par addition de 5 ml d'une solution aqueuse d'acide chlorhydrique à 10%. La phase organique est récupérée et la phase aqueuse est extraite à l'éther (2 x 5 ml). Les phases éthérées sont regroupées, séchées sur sulfate de magnésium et le solvant est évaporé sous vide. Le produit brut est purifié par chromatographie sur silice (éluant : hexane-éther : 50/50). On obtient ainsi 309mg du mélange des diols <u>16</u> (10%) et <u>19</u> (90%) (Rdt: 88%). Les caractéristiques RMN de l'isomère anti-1,2 syn-2,3 suivent :

RMN ¹H (CDCl₂, 250 MHz) δ (ppm) : 0,75 - 0,95 (4H, m, dont d, J = 7,5 Hz à 0,86 et 0,90 ppm) ; i,00 (s) et i,04 (s) (3H, CH3) ; i,28 - i,71 (m) et i,82 (d.d, J = il,4 Hz, J' = 3,5 Hz) (3H) ; 2,10 (l, m, HB) ; 2,55 (se), 2,75 (se), 2,84 (se) et 2,89 (se) (3H) ; 3,30 (IH, se, OH) ; 3,65 (d, J = 5,8 Hz) et 3,67 (d, J = 3,6 Hz) (IH, HA) ; 5,21 (d, J = 2,1 Hz) et 5,30 (d, J = i,8 Hz) (IH, HC) ; 6,08 - 6,22 (2H, m, -CH=CH-) ; 7,20 - 7,40 (5H, m, Ph). RMN ^C (CDCl₃, 60 MHz) δ (ppm) : i3,26 et i3,37 ; i9,14 et i9,61; 38,33 ; 39,85 ; 4i,07 ; 42,52 ; 43,81 ; 46,79 ; 47,32 ; 48,70 ; 49,17 ; 65,80 ; 73,70 et 74,95 ; 80,83 et 83,32 ; i25,74 et i26,10 ; i26,73 et i26,83 ; i28,01 ; i35,47 ; i37,56 ; i36,21 et i37,03 ; i43,13 et 143,48.

Mode opératoire général pour la thermolyse des diols 16 et 19

Les diols <u>16</u> syn-1,2 syn-2,3 et <u>19</u> anti-1,2 syn-2,3 sont vaporisés dans un four préalablement chauffé à 600°C. Dès leur sortie du four le cyclopentaidène et l'alcool allylique sont piégés sur les parois d'un dewar refroidies à la température de l'azote liquide. Le produit est récupéré en lavant les parois du dewar par de l'acétate d'éthyle. Le solvant et le cyclopentadiène sont évaporés sous pression réduite et le résidu est analysé par RMN avant d'être purifié par chromatographie sur silice (éluant : hexane-éther: 1/1).

Syn-1,2 syn-2,3 diméthyl-2,4 phényl-1 pentène-4 diol-1,3 17

Obtenu par thermolyse du diol 16 (90%).

IR (solution, CC14) (cm⁻¹) : 3620 (FF) ; 3530 (FF) ; 3160 (f) ; 3090 (m) ; 3070 (m) ; 3040 (m) ; 1950 (ff) ; 1890 (ff) ; 1820 (ff) ; 1650 (m) ; 1110 (FF) ; 1070 (F). SM : M⁺ 206 (m/e int. rel.) : 188 (I,3) ; 134 (10,1) ; 118 (28,6) ; 117 (19,6) ; 107 (17,2) ; 105 (10,3) ; 82 (100) ; 79 (26,8) ; 77 (22,5) ; 67 (44,9) ; 43 (16,0). RMN ⁺ H (CDC1₃, 250 MHz) δ (ppm) : 0,68 (3H, d, J = 7,1 Hz, CH3, C-2) ; 1,63 (s, CH3, C-4) ; 1,89 (IH, m, H-2) ; 3,20 (2H, se, OH) ; 4,28 (IH, se, H-3) ; 4,88 (IH, d, J = 1,4 Hz, H-5) ; 4,97 (IH, d, J = 3,0 Hz, H-1) ; 5,00 (IH, se, H-1) ; 7,15 - 7,40 (5H, m, Ph). RMN ⁺ C (CDC1₃, 60 MHz) δ (ppm) :

4,51 (CH3-2) ; 19,58 (CH3-4) ; 41,72 (C-2) ; 77,88 (C-3) ; 78,70 (C-1) ; 110,24 (C-5) ; 128,12, 127,04, 125,76, 143,40 (Ph) ; 145,89 (C-4). Analyse : calculée pour $C_{13}H_{18}O_2$: C : 75,73 ; H : 8,74 ; trouvée : C : 75,74 ; H : 8,50.

Syn-l,2 anti-2,3 diméthyl-2,4 phényl-l pentène-4 diol-l,3 21

La thermolyse des diols <u>16</u> et <u>19</u> obtenus par réduction de la β -siloxycétone <u>18</u> conduit aux diols <u>17</u> et <u>21</u> (95%) dans la proportion de 10/90.

Par réduction de la β -siloxycétone 20 par l'hydrure de lithium et d'aluminium on obtient le diol 21 syn-l,2 anti-2,3 (74%). Ce seul isomère est observable par RMN du proton.

RMN ¹H (CDCl₂, 250 MHz) δ (ppm): 0,79 (3H, d, J = 7,1 Hz, CH3, C-2); 1,78 (3H, s, CH3, C-4); 2,00 (1H, m, H-2); 3,50 (2H, se, OH); 4,05 (1H, d, J = 5,2 Hz, H-3); 4,95 (1H, se, H-5); 5,03 (1H, se, H-5); 5,05 (1H, d, J = 2,3 Hz, H-1); 7,20 - 7,40 (5H, m, Ph). RMN ¹⁵C (CDCl₂, 60 MHz) δ (ppm): 10,84 (CH3-2); 18,01 (CH3-4); 40,89 (C-2); 73,99 (C-3); 79,14 C-1); 112,39 (C-5); 125,97, 126,78, 127,91, 142,82 (Ph); 145,82 (C-4). Analyse : calculée pour C₁₃H₁₈O₂ : C : 75,73; H : 8,74; trouvée : C : 75,90; H : 8,80.

Bibliographie

- 1) a) D.A. EVANS, J.V. NELSON et T.R. TABER, Topics in stereochemistry, J. Wiley, New York 1982, vol. 13, p. 1.
 - b) S. MASAMUNE et W. CHOY, Aldrichimica Acta, 1982, 15, 47.
 - c) T. MUKAIYAMA, Organic Reactions, 1982, 28, 203.
 - d) C.H. HEATHCOCK, Current Trends in Organic Synthesis, Pergamon Press, Oxford 1983, p. 27.
 - e) C.H. HEATHCOCK, Asymmetric Synthesis, Academic Press, Orlando 1984, vol. 3, p. 111.
 - f) S. MASAMUNE, W. CHOY, J.S. PETERSEN et L.R. SITA, Angew. Chem. Int. Ed., 1985, 24, 1.
- 2) Pour une revue récente voir I. PATERSON et M.M. MANSURI, Tetrahedron, 1985, 18, 3569.
- 3) S. MASAMUNE, S.A. ALI, D.L. SNITMAN et D.S. GARVEY, Angew. Chem. Int. Ed., 1980, 19, 557.
- a) J.E. DUBOIS et P. FELLMANN, Tetrahedron Letters, 1975, 1225.
 b) C.M. HEATHCOCK, C.T. BUSE, W.A. KLESCHICK, M.C. PIRRUNG, J.E. SOHN et J. LAMPE, J. Org. Chem., 1980, 45, 1066.
- 5) N.T. ANH et B.T. THANH, Nouv. J. Chimie, 1986, 10, 681.
- a) S. MASAMUNE, W. CHOY, F.A.J. KERDESKY et B. IMPERIALI, J. Am. Chem. Soc., 1981, 103, 1566.
 b) D. SEEBACH, M. ERTAS, R. LOCHER et N. BERND-SCHWEIZER, Helv. Chim. Acta, 1985, 68, 264.
- Certains résultats ont fait l'objet d'une publication préliminaire : R. BLOCH et L. GILBERT, Tetrahedron Letters, 1986, 27, 3511.
- 8) H. STETTER et A. LANDSCHEIDT, Chem. Ber., 1979, 112, 1410.
- 9) P. LASZLO et J. LUCCHETTI, Tetrahedron Letters, 1984, 25, 4387.
- 10) H.O. HOUSE, L.J. CZUBA, M. GALL et M.D. OLMSTEAD, J. Org. Chem., 1969, 34, 2324.
- 11) C.H. HEATHCOCK, M.C. PIRRUNG et J.E. SOHN, J. Org. Chem., 1979, 44, 4294.
- 12) a) M. CHEREST, H. FELKIN et N. PRUDENT, Tetrahedron Letters, 1968, p. 2199.
 b) N.T. ANH, Topics in Current Chemistry, 1980, <u>88</u>, 145.
- 13) a) K. NARASAKA et F.C. PAI, Tetrahedron, 1984, 40, 2233.
 b) K.M. CHEN, G.E. HARDTMANN, K. PRASAD, O. REPIC et M.J. SHAPIRO, Tetrahedron Letters, 1987, 28, 155.
- 14) S.I. KIYOOKA, M. KURODA et Y. SHIMASAKI, Tetrahedron Letters, 1986, 27, 3009.
- 15) R. BLOCH, L. GILBERT et C. GIRARD, Tetrahedron Letters, sous presse.
- 16) A.J. MANCUSO, S.L. HUANG, D. SWERN, J. Org. Chem., 1978, 43, 2480.
- 17) S. HANESSIAN et P. LAVALLEE, Can. J. Chem., 1975, 53, 2975.